LHS
√1−cosθ1+cosθ=√(1−cosθ)(1−cosθ)(1+cosθ)(1−cosθ)=√(1−cosθ)21−cos2θ
∵sin2θ=1−cos2θ&√(1−cosθ)2=|1−cosθ|=1−cosθ
⇒1−cosθ√sin2θ=1−cosθ|sinθ|
RHS
cscθ−cotθ=1sinθ−cosθsinθ=1−cosθsinθ
Equating LHS to RHS, we get
1−cosθ|sinθ|=1−cosθsinθ
⇒|sinθ|=sinθ
∵sinθ is positive
∴θ∈(0,π)
Hence θ∈(2nπ,(2n+1)π)