wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve for θ:-
1cosθ1+cosθ=cosecθcotθ

Open in App
Solution

LHS

1cosθ1+cosθ=(1cosθ)(1cosθ)(1+cosθ)(1cosθ)=(1cosθ)21cos2θ

sin2θ=1cos2θ&(1cosθ)2=|1cosθ|=1cosθ

1cosθsin2θ=1cosθ|sinθ|

RHS

cscθcotθ=1sinθcosθsinθ=1cosθsinθ

Equating LHS to RHS, we get

1cosθ|sinθ|=1cosθsinθ

|sinθ|=sinθ

sinθ is positive

θ(0,π)

Hence θ(2nπ,(2n+1)π)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon