The given quadratic equation is 4x2−4ax+(a2−b2)=0
4x2−4ax+(a2−b2)=0
∴4x2−4ax+(a−b)(a+b)=0
⇒4x2+[−2a−2a+2b−2b]x+(a−b)(a+b)=0
⇒4x2+(2b−2a)x−2(2a+2b)x+(a−b)(a+b)=0
⇒4x2+2(b−a)x−2(a+b)x+(a−b)(a+b)=0
⇒2x[2x−(a−b)]−(a+b)[2x−(a−b)]=0
⇒[2x−(a−b)] or [2x−(a+b)]=0
⇒2x=a−b or 2x =a+b
⇒x=a−b2 or x=a+b2
Thus, the solution of the given quadratic equation is given by x=a−b2 or x=a+b2
OR
The given quadratic equation is 3x2−2√6x+2=0
Comparing with the quadratic equation ax2+bx+c=0, we have
a=3,b=−2√6 and c =2
discriminant of the given quadratic equation
D=b2−4ac=(2√6)2−4×3×2=24−24=0
∴x=−2(√6)±√06∵x=−b±√D2a
⇒x=2√66⇒x=√63
Thus, the solution of the given quadratic equation is x=√63