Solve for x :9x2−9(a+b)x+(2a2+5ab+2b2)=0by the quadratic polynomial.
Consider,
9x2−9(a+b)x+(2a2+5ab+3b2)
Comparing with Ax2+Bx+C=0
We get,
A=9,B=−9(a+b),C=(2a2+5ab+2b2)
Discriminant =B2−4AC=9(a−b)2
Now using quadratic formula-
x=−B±√B2−4AC2A⇒x=9(a+b)±3(a−b)2×9⇒x=(3a+3b)±(a−b)6
⇒x=(a+2b)3orx=(2a+b)3