Solve for xandy
15x+9y=4;3x+27y=24
Step 1:Solve the equation in assumption of 1x=Aand1y=B
Given equations,
15x+9y=4........................................(1)3x+27y=24.......................................(2)
Giving substitutions
Let1x=Aand1y=Bequation(1)āA5+9B=4āA+45B=20.....................(3)equation(2)ā3A+27B=24....................(4)
Step 2: To find A and B
Equation (3) Ć3
ā3A+135B=60...............................(5)ā3A+27B=24.................(4)
Using elimination method
equation (5)-(4)
ā108B=36B=36108=13
Now,
from equation (3)
āA=20-45B=20-45Ć13=20-15=5
Step 3: To find xandy
We have,
A=1xā5=1xāx=15B=1yā13=1yāy=3
Hence the values of x=15andy=3
9+25xy=53x;27-4xy=x
x-yxy=9;x+yxy=5
3x-23y+7=5x-15y+16;3x-15x-9=6y-52y+3
x+y-1x-y+1=7;y-x+1x-y+1=35
x+2y+12x-y+1=2;3x-y+1x-y+3=5