dydx=1cos(x+y)
Let x+y=v
1+dydx=dvdx
dydx=dvdx−1
The original differential equation becomes :
dvdx−1=1cosv
dvdx=1+cosvcosv
∫cosvdv1+cosv=∫dx
∫cosv+1−11+cosvdv=x+C
∫dv−∫11+cosvdv=x+C
v−∫12cos2(v2)dv=x+C
v−12∫sec2(v2)dv=x+C
v−12tan(v2)=x+C
x+y−12tanx+y2=x+C
y−12tanx+y2=C