wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: dydx=x(2yx)x(2y+x), if y=1 when x=1

Open in App
Solution

Given,

dydx=x(2yx)x(2y+x)

dydx=(2yx)(2y+x)

substitute y=vxdydx=xdvdx+v

xdvdx+v=(2vxx)(2vx+x)

xdvdx=(2v1)(2v+1)v

xdvdx=(2v2+v1)(2v+1)

(2v+1)(2v2+v1)dv=1xdx

integrating on both sides, we get,

(2v+1)(2v2+v1)dv=1xdx

12v2+vlog(2v+1)+58=logx+c

12(yx)2+yxlog(2yx+1)+58=logx+c

put y=1=x, we get,

12(11)2+11log(211+1)+58=log1+c

12+1+58=c

c=98

12(yx)2+yxlog(2yx+1)+58=logx+98

12(yx)2+yxlog(2yx+1)=logx+12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon