∫π20dx2cosx+4sinx
=12∫dxcosx+2sinx
=12∫π20dx⎛⎜
⎜⎝1−tan2x21+tan2x2⎞⎟
⎟⎠+2⎛⎜
⎜⎝2tanx21+tan2x2⎞⎟
⎟⎠
=12∫π20(1+tan2x2)dx1−tan2x2+4tanx2
=12∫π20sec2x2dx1−tan2x2+4tanx2
Let t=tanx2⇒dt=12sec2x2dx
=12∫π202dt1−t2+4t
=−∫π20dtt2−4t−1
=−∫π20dtt2−2×2t+4−4−1
=−∫π20dt(t−2)2−(√5)2
=∫π20dt(√5)2−(t−2)2
We know that ∫dxa2−x2=12alna+xa−x+c
=[12×√5ln√5+t−2√5−t+2]π20
=⎡⎢
⎢⎣12×√5ln√5+tanx2−2√5−tanx2+2⎤⎥
⎥⎦π20 where t=tanx2
=12√5⎡⎢
⎢⎣ln√5+tanπ4−2√5−tanπ4+2−ln√5+tan0−2√5−tan0+2⎤⎥
⎥⎦
=12√5[ln√5+1−2√5−1+2−ln√5+0−2√5−0+2]
=12√5[ln√5−1√5+1−ln√5−2√5+2]