wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve
π0x(1+sinx)dx

Open in App
Solution

π0x(1+sinx)dxLetI=π0(πx)(1+sinx)dx..........(i)Then,I=π0(πx)1+sin(πx)dx=π0(πx)(1+sinx)dx........(ii)Adding(i)and(ii),weget2I=ππ0dx(1+sinx)=π.π01(1+sinx)×(1sinx)(1sinx)dxor2I=ππ0(1sinxcos2x)dx=π.[π0sec2xdxπ0secxtanxdx]=π{[tanx]π0[secx]π0}=2πI=π,i.e.,π0x(1sinx)dx=π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon