∫ex(x−1x2)dx
=∫ex(1x−1x2)dx
=∫ex(1x)dx−∫ex1x2dx
=1x∫exdx−∫ddx1x∫exdx)dx−∫ex1x2dx
=1xex−∫−1x2exdx−∫ex1x2dx
=exx+c
∫ex(x−1)(x−ln x)x2dx is equal to