∫sin4x⋅cos2xdx=∫(sin2x)(sin2x⋅cos2x)dx
=∫12(1−cos2x)(sin2x2)2dx
cos2x=1−2sin2x
sin2x=1−cos2x2
sin2x=2sinxcosx
The integral becomes
=∫12(1−cos2x)⋅(sin2x2)2dx
=18(∫(1−cos2x)⋅sin(2x)dx))
=18(∫(sin22x−cos2x⋅sin2(2x))dx)
=18∫12⋅2sin2(2x)dx−∫12⋅2cos2xsin22xdx
=18(∫12⋅(1−cos(4x))dx−∫12sin22xdsin2x)
=116(∫(1−cos(4x)dx−∫sin2(2x)dsin2x)
dsin2xdx=2cos2x
dsin(2x)=2cos2x⋅dx
=116(x−sin4x4−sin3(2x)3)+C.