wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
sin4x.cos2xdx

Open in App
Solution

sin4xcos2xdx=(sin2x)(sin2xcos2x)dx
=12(1cos2x)(sin2x2)2dx
cos2x=12sin2x
sin2x=1cos2x2
sin2x=2sinxcosx
The integral becomes
=12(1cos2x)(sin2x2)2dx
=18((1cos2x)sin(2x)dx))
=18((sin22xcos2xsin2(2x))dx)
=18122sin2(2x)dx122cos2xsin22xdx
=18(12(1cos(4x))dx12sin22xdsin2x)
=116((1cos(4x)dxsin2(2x)dsin2x)
dsin2xdx=2cos2x
dsin(2x)=2cos2xdx
=116(xsin4x4sin3(2x)3)+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon