Consider the given integral.
I=∫sin4xsin8xdx
I=∫sin8xsin4xdx
We know that
2sinAsinB=cos(A−B)−cos(A+B)
Therefore,
I=12∫2sin8xsin4xdx
I=12∫(cos(8x−4x)−cos(8x+4x))dx
I=12∫(cos4x−cos12x)dx
I=12[sin4x4−sin12x12]+C
Hence, this is the answer.