Given
log3(√x+∣∣√x−1∣∣)=log9(4√x−3+4∣∣√x−1∣∣)⇒log3(√x+∣∣√x−1∣∣)=log32(4√x−3+4∣∣√x−1∣∣)⇒log3(√x+∣∣√x−1∣∣)=12log3(4√x−3+4∣∣√x−1∣∣)(logamb=1mlogab)⇒√x+∣∣√x−1∣∣=√(4√x−3+4∣∣√x−1∣∣)
Squaring both sides we get ,
⇒x+x+1−2√x+2√x∣∣√x−1∣∣=4√x−3+4∣∣√x−1∣∣−(i)
Case1:√x−1≥0⇒x≥1
Equation (i) then reduces to
2x+1−2√x+2x−2√x=4√x−3+4√x−4⇒4x−4√x+1=8√x−7⇒4x−12√x+8=0⇒x−3√x+2=0⇒x−2√x−√x+2=0⇒√x(√x−2)−1(√x−2)=0⇒(√x−1)(√x−2)=0∴x=1orx=4
In the region x≥1,both x=1 & 4 are acceptable.
Case2:√x−1<0⇒x<1 but x>0 i.e.,xϵ(0,1)
Equation (i) then reduces to
2x+1−2√x+2√x−2x=4√x−3+4√x1=1
which is always true.
∴ the given equality
log3(√x+∣∣√x−1∣∣)=log9(4√x−3+4∣∣√x−1∣∣)
holds true for xϵ(0,1)∪{1,4}