wehave,sin−1(1−x)−2sin−1x=π2(ifx=siny)⇒sin−1(1−siny)−2sin−1(siny)=π2⇒sin−1(1−siny)−2y=π2⇒sin−1(1−siny)=π2+2y⇒1−siny=cos2y⇒1−siny=1−2sin2y⇒2sin2y=siny⇒siny(2siny−1)=0∴siny=0,x=0siny=12,x=12case1:siny=0,x=0sin−1(1−x)−2sin−1x=π2∴sin−11=π2case2:siny=12,x=12⇒sin−1(1−12)−2sin−112=π2⇒sin−112−2sin−112=π2∴−sin−112=π6≠π2