wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential Equation:
(1x2)2dy+(y1x2x1x2)dx=0.

Open in App
Solution

M(x,y)=(y1)1x2x
N(x,y)=(1x2)2dy
We can see that dμdydNdx
M(x,y)dx+N(x,y)dy=0 is not a eract D. E
Let μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=0 be an eract D. E
Whereμ(x,y)=integrating fraction
1μ=dμdydNdnNdμdxM2μdy
dμdy=1x2
dNdx=2(1x2)=(2x)
In case, the integrating factor μ depends only on x
=1μ.dμdx=dμdydNdxN
=1x2+μx(1x2)(1x2)2
dμμ=[(1x2)3/22.2xdx(1x2)]dx
ln(μ)=21x22ln(1x2)
ln(μ(1x2)2=21x2
μ(n)=1(1x2)2.e21x2
1(1x2)2=e21x2.[(y1)1x2x]dx+e21x2dy=0
=f(x,y)=e21x2dy+h(n)
=y.e21x2+h(n)
dfdx=y.e21x2.1(1x2)2+dhdx
dhdx=e21x2(1x2)3/2x.e21x2(1x2)2
Intergerating with respect to x ; we get
h(x)=xe21x2+c
f(x,y)=(yx).e21x2+c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon