M(x,y)=(y−1)√1−x2−x
N(x,y)=(1−x2)2dy
We can see that dμdy≠dNdx
⇒M(x,y)dx+N(x,y)dy=0 is not a eract D. E
Let μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=0 be an
eract D. E
Whereμ(x,y)=integrating fraction
1μ=dμdy−dNdnNdμdx−M2μdy
dμdy=√1−x2
dNdx=2(1−x2)=(−2x)
In case, the integrating factor μ depends only on x
=1μ.dμdx=dμdy−dNdxN
=√1−x2+μx(1−x2)(1−x2)2
⇒∫dμμ=∫[(1−x2)−3/2−2.−2xdx(1−x2)]dx
⇒ln(μ)=−2√1−x2−2ln(1−x2)
⇒ln(μ(1−x2)2=−2√1−x2
⇒μ(n)=1(1−x2)2.e−2√1−x2
⇒1(1−x2)2=e−2√1−x2.[(y−1)√1−x2−x]dx+e−2√1−x2dy=0
=f(x,y)=∫e−2√1−x2dy+h(n)
=y.e−2√1−x2+h(n)
dfdx=y.e−2√1−x2.1(1−x2)2+dhdx
⇒dhdx=e−2√1−x2(1−x2)3/2−x.e−2√1−x2(1−x2)2
Intergerating with respect to x ; we get
h(x)=−xe−2√1−x2+c
∴f(x,y)=(y−x).e−2√1−x2+c