On rearranging the equation becomes:
(tan−1y−x)dy=(1+y2)dx⇒dxdy+x1+y2=tan−1y1+y2.
This is in the form dxdy+P(y).x=Q(y), so it is a non homogeneous linear differential equation of the first order.
the integrating factor is: I.F.=e∫dy1+y2=etan−1y
Multiplying both sides of the equation with integrating factor, we get:
etan−1y(dxdy+x1+y2)=etan−1ytan−1y1+y2⇒etan−1ydxdy+etan−1yx1+y2=etan−1ytan−1y1+y2⇒ddy(xetan−1y)=etan−1ytan−1y1+y2
Integrating by parts, by taking tan−1y as first function and etan−1y1+y2 as second function we get:
⇒xetan−1y=∫etan−1ytan−1y1+y2dy=tan−1y∫etan−1y1+y2dy−∫d(tan−1y)(∫etan−1y1+y2dy)=tan−1y.etan−1y−∫dy1+y2(∫etan−1y1+y2dy)⇒xetan−1y=tan−1y.etan−1y−etan−1y+C⇒x=tan−1y−1+Ce−tan−1y