The correct option is A y=cx−xarctanx−1
(1+y+x2y)dx=(x+x3)dy
Given differential eqn can be written as
dydx=1+y+x2y(x+x3)
⇒dydx=1x+x3+y(1+x2)x+x3
⇒dydx−yx=1x+x3
which is a linear differential equation.
Here, P=−1x, Q=1x+x3
Integrating Factor I.F.=e∫Pdx
=e∫−1xdx
⇒I.F=e−logx
⇒I.F.=1x
Solution is given by
y1x=∫1x2(1+x2)dx .....(1)
Resolving 1x2(1+x2) into partial fractions
1x2(1+x2)=Ax+Bx2+Cx+D(1+x2)
⇒1=Ax(1+x2)+B(1+x2)+(Cx+D)x2
On comparing , we get
B=1
A+C=0
B+D=0
A=0
So, we get
A=C=0,B=1,D=−1
⇒1x2(1+x2)=1x2+−1(1+x2)
⇒∫1x2(1+x2)dx=∫1x2dx−∫1(1+x2)dx
⇒∫1x2(1+x2)dx=−1x−tan−1x+C
So, by (1),
⇒yx=−1x−tan−1x+C