wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differntial equation 2dydxysecx=y3tanx.

A
1y2(secx+tanx)=secx+tanxx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1y2(secxtanx)=secx+tanxx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1y2(secx+tanx)=secx+tanxx+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1y2(secx+tanx)=secx+tanxx+c
Given, 2dydxysecx=y3tanx
2y3dydx1y2secx=tanx
Put 1y2=v1ydy=dv
dvdx+vsecx=tanx ....(1)
Here P=secxPdx=secxdx=log(secx+tanx)
I.F.=elog(secx+tanx)=secx+tanx
Multiplying (1) by I.F. we get
(secx+tanx)dvdx+vsecx(secx+tanx)=tanx(secx+tanx)
Integrating both sides, we get
(secx+tanx)v=tanx(secx+tanx)dx+c
1y2(secx+tanx)=secx+tanxx+c(tan2x=sec2x1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon