wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the each of the following differential equations:
(i) x-ydydx=x+2y

(ii) x cosyxdydx=y cosyx+x

(iii) y dx + x log yx dy − 2x dy = 0

(iv) dydx-y=cos x

(v) xdydx+2y=x2, x0

(vi) dydx+2y=sin x

(vii) dydx+3y=e-2x

(viii) dydx+yx=x2

(ix) dydx+sec x y=tan x

(x) xdydx+2y=x2 log x

(xi) x log xdydx+y=2xlog x

(xii) (1 + x2) dy + 2xy dx = cot x dx

(xiii) x+ydydx=1

(xiv) y dx + (x − y2) dy = 0

(xv) x+3y2dydx=y

Open in App
Solution

i We have,x-ydydx=x+2ydydx=x+2yx-y .....1Clearly this is a homogeneous equation,Putting y=vxdydx=v+xdvdxSubstituting y=vx and dydx=v+xdvdx 1 becomes,v+xdvdx=x+2vxx-vxv+xdvdx=1+2v1-vxdvdx=1+2v1-v-vxdvdx=1+2v-v+v21-vxdvdx=v2+v+11-v1-vv2+v+1dv=1xdx-vv2+v+1+1v2+v+1dv=1xdx-12×2v+1-1v2+v+1+1v2+v+1dv=1xdx-12×2v+1v2+v+1+12×1v2+v+1+1v2+v+1dv=1xdx-12×2v+1v2+v+1+32×1v2+v+1dv=1xdx-12×2v+1v2+v+1+32×1v2+v+14+34dv=1xdx-12×2v+1v2+v+1+32×1v+122+322dv=1xdxIntegrating both sides, we get-12×2v+1v2+v+1+32×1v+122+322dv=1xdx-122v+1v2+v+1dv+321v+122+322dv=1xdx-12log v2+v+1+32×132tan-1v+1232=log x+C-12log yx2+yx+1+32×132tan-1yx+1232=log x+C-12log y2+xy+x2x2+3tan-12y+x3x=log x+C-12log y2+xy+x2+12log x2+3tan-12y+x3x=log x+C-12log y2+xy+x2+log x+3tan-12y+x3x=log x+C-12log y2+xy+x2+3tan-12y+x3x=Clog y2+xy+x2-23tan-12y+x3x=-2Clog y2+xy+x2=23tan-12y+x3x-2Clog y2+xy+x2=23tan-12y+x3x+k Where, k=-2C

ii We have,x cos yxdydx=y cosyx+xdydx=y cosyx+xx cos yx .....1Clearly this is a homogeneous equation,Putting y=vxdydx=v+xdvdxSubstituting y=vx and dydx=v+xdvdx in 1 we getdydx=y cosyx+xx cos yxv+xdvdx=vx cos v+xx cos vv+xdvdx=v cos v+1cos vxdvdx=v cos v+1cos v-vxdvdx=v cos v+1- v cos vcos vxdvdx=1cos vcos v dv=1xdxIntegrating both sides, we getcos v dv=1xdxsin v=log x+log Csin yx=log Cx

iii We have,y dx+x log yxdy-2x dy=0x log yxdy-2x dy=-y dxlog yx-2x dy=-y dxdydx=-ylog yx-2xdydx=yx2-log yx .....1Clearly this is a homogenous equation,Putting y=vxdydx=v+xdvdxSubstituting y=vx and dydx=v+xdvdx in 1 we getv+xdvdx=v2-log vxdvdx=v2-log v-vxdvdx=v-2v+v log v2-log vxdvdx=-v+v log v2-log v2-log v-v+v log vdv=1xdxlog v-2v log v-vdv=-1xdxlog v-1-1v log v-1dv=-1xdxlog v-1v log v-1dv-1v log v-1dv=-1xdx1vdv-1v log v-1dv=-1xdxIntegrating both sides we get1vdv-1v log v-1dv=-1xdxlog v-I =-log x-log C .....2Where,I=1v log v-1dvPuting log v=t1vdv=dtI=1t-1dtI=log t-1I=log log v-1 .....3From 2 and 3 we getlog v-log log v-1 =-log x-log Clog vlog v-1 =-log Cxvlog v-1=1Cxlog v-1=vCxlog yx-1=Cy


iv We have,dydx-y=cos xComparing with dydx+Py=Q, we getP=-1 Q=cos xNow, I.F.=e-1dx =e-xSolution is given by,y×I.F.=cos x×I.F. dx+Cye-x=e-x cos x dx+Cye-x=I+C .....1Where,I=e-xIIcos x Idx .....2 I=cos xe-x dx-ddxcos xe-x dxdx I=-cos x e-x-sin x e-x dx I=-cos x e-x-sin xI e-xII dx I=-cos x e-x-sin xe-x dx+ddxsin xe-x dxdx I=-cos x e-x+sin x e-x -cos x e-x dx I=-cos x e-x+sin xe-x-I Using 2 2I=-cos x e-x+sin xe-x I=12-cos x+sin xe-x .....3From 1 and 3, we get ye-x=sin x-cos xe-x +Cy=12sin x-cos x+Cex


v We have,xdydx+2y=x2dydx+2xy=xComparing with dydx+Py=Q, we getP=2x Q=xNow,I.F.=e21xdx=e2log x=x2So, the solution is given by y×I.F.=Q×I.F. dx +Cyx2=x3 dx+Cyx2=x44+Cy=x24+Cx-2


vi We have,dydx+2y=sin xComparing with dydx+Py=Q, we getP=2 Q=sin xNow,I.F.=e2dx =e2xSolution is given by,y×I.F.=sin x×I.F. dx+Cye2x=I+C .....1Where,I=e2xIIsin xIdx .....2 I=sin xe2x dx-ddxsin xe2x dxdx I=sin x e2x2-12cos x e2x dx I=sin x e2x2-12cos xI e2xII dx I=sin x e2x2-12cos xe2x dx+12ddxcos xe2x dxdx I=sin x e2x2-14cos x e2x -14sin x e2x dx I=sin x e2x2-14cos x e2x -14I Using 2 I+14I=12sin x e2x-14cos x e2x 54I=142sin x e2x-cos xe2x I=152sin x-cos xe2x .....3Therefore from 1 and 3, we get ye2x=152sin x-cos xe2x +Cy=152 sin x-cos x+Ce-2x


vii We have,dydx+3y=e-2xComparing with dydx+Py=Q, we getP=3Q=e-2xNow,I.F.=eP dx=e3dx =e3xSo, the solution is given byy×I.F.=Q×I.F. dx +Cye3x=e3x×e-2xdx+Cye3x=ex+Cy=e-2x+Ce-3x


viii We have,dydx+yx=x2 dydx+1xy=x2Comparing with dydx+Py=Q, we getP=1x Q=x2Now,I.F.=e1xdx =elogx=xSo, the solution is given byy×I.F.=Q×I.F. dx +Cyx=x3+Cxy=x44+C


ix We have,dydx+ sec xy=tan xComparing with dydx+Py=Q, we getP=sec xQ=tan xNow,I.F.=esec x dx=elogsec x+tan x=sec x+tan xSo, the solution is given byy×I.F=Q×I.F. dx +Cysec x+tan x=sec x+tan xtan x+Cysec x+tan x=sec x×tan x dx+tan2 x dx+Cysec x+tan x=sec x×tan x dx+sec2 x-1 dx+Cysec x+tan x=sec x+tan x-x+C


x We have,xdydx+2y=x2 log xDividing both sides by x, we getdydx+2yx=x log xComparing with dydx+Py=Q, we getP=2x Q=x log xNow,I.F.=ePdx=e2xdx=e2logx=x2So, the solution is given byy×I.F.=Q×I.F. dx+Cx2y=x3IIlog xI dx+Cx2y=log xx3 dx-ddxlog xx3 dxdx+Cx2y=x4log x4-x34dx+Cx2y=x4log x4-x416+Cy=x2log x4-x216+Cx2y=x2164log x-1+Cx-2


xi We have,x log xdydx+y=2xlog xDividing both sides by x log x, we getdydx+yx log x=2x log xx logxdydx+yx log x=2 x2dydx+1x log xy=2 x2Comparing with dydx+Py=Q, we getP=1x log x Q=2 x2Now, I.F.=ePdx=e1x log xdx=eloglog x=log xSo, the solution is given byy×I.F.=Q×I.F. dx+Cylog x=21x2×log x dx+Cylog x=I+C .....1Where,I=21x2II log x Idx I=2log x1x2 dx-2ddxlog x1x2 dxdx I=-2xlog x+21x2 dx I=-2xlog x-2x .....2From 1 and 2 we get ylog x=-2xlog x-2x+Cylog x=-2xlog x+1+C

xii We have,1+x2dy+2xy dx=cot x dxdydx+2x1+x2y=cot x1+x2Comparing with dydx+Py=Q, we getP=2x1+x2Q=cot x1+x2Now,I.F.=e2x1+x2dx =elog1+x2=1+x2So, the solution is given byy×I.F.=Q×I.F. dx +Cy1+x2=cot x1+x2×1+x2 dx+Cy1+x2=cot x dx+Cy1+x2=log sin x+Cy=1+x2-1log sin x+C1+x2-1


xiii We have,x+ydydx=1dydx=1x+yLet x+y=v1+dydx=dvdxdydx=dvdx-1 dvdx-1=1vdvdx=1v+1dvdx=1+vvv1+vdv=dxIntegrating both sides, we getv1+vdv=dxv+1-11+vdv=dxdv-11+vdv=dxv-log v+1=x-log Cx+y-log x+y+1=x-log Cy-log x+y+1=-log Cy=logx+y+1-log Cy=logx+y+1CCey=x+y+1


xiv We have,y dx+x-y2dy=0y dx=-x-y2dy dxdy=-1yx-y2 dxdy+1yx=y .....1Clearly, it is a linear differential equation of the form dxdy+Px=Qwhere P=1y and Q=y I.F.=eP dy =e1ydy = elog y=yMultiplying both sides of 1 by I.F.=y, we getydxdy+1yx= y×yydxdy+x=y2Integrating both sides with respect to y, we getxy=y2dy+Cxy=y33+Cx=y23+CyHence, x=y23+Cy is the required solution.


xv We have,x+3y2dydx=ydxdy=1yx+3y2 dxdy-1yx=3y .....1Clearly, it is a linear differential equation of the formdxdy+Px=Qwhere P=-1y and Q=3y I.F.=eP dy =e-1ydy = e-log y=1yMultiplying both sides of (1) by I.F.=1y, we get1ydxdy-1yx= 1y×3y1ydxdy-1yx=3Integrating both sides with respect to y, we getx1y= 3dy+Cx1y=3y+Cx=3y2+CyHence, x=3y2+Cy is the required solution.

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon