1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Standard Formulae - 3
Solve the eac...
Question
Solve the each of the following differential equations:
(i)
x
-
y
d
y
d
x
=
x
+
2
y
(ii)
x
cos
y
x
d
y
d
x
=
y
cos
y
x
+
x
(iii) y dx + x log
y
x
dy − 2x dy = 0
(iv)
d
y
d
x
-
y
=
cos
x
(v)
x
d
y
d
x
+
2
y
=
x
2
,
x
≠
0
(vi)
d
y
d
x
+
2
y
=
sin
x
(vii)
d
y
d
x
+
3
y
=
e
-
2
x
(viii)
d
y
d
x
+
y
x
=
x
2
(ix)
d
y
d
x
+
sec
x
y
=
tan
x
(x)
x
d
y
d
x
+
2
y
=
x
2
log
x
(xi)
x
log
x
d
y
d
x
+
y
=
2
x
log
x
(xii) (1 + x
2
) dy + 2xy dx = cot x dx
(xiii)
x
+
y
d
y
d
x
=
1
(xiv) y dx + (x − y
2
) dy = 0
(xv)
x
+
3
y
2
d
y
d
x
=
y
Open in App
Solution
i
We
have
,
x
-
y
d
y
d
x
=
x
+
2
y
⇒
d
y
d
x
=
x
+
2
y
x
-
y
.
.
.
.
.
1
Clearly
this
is
a
homogeneous
equation
,
Putting
y
=
v
x
⇒
d
y
d
x
=
v
+
x
d
v
d
x
Substituting
y
=
v
x
and
d
y
d
x
=
v
+
x
d
v
d
x
1
becomes
,
v
+
x
d
v
d
x
=
x
+
2
v
x
x
-
v
x
⇒
v
+
x
d
v
d
x
=
1
+
2
v
1
-
v
⇒
x
d
v
d
x
=
1
+
2
v
1
-
v
-
v
⇒
x
d
v
d
x
=
1
+
2
v
-
v
+
v
2
1
-
v
⇒
x
d
v
d
x
=
v
2
+
v
+
1
1
-
v
⇒
1
-
v
v
2
+
v
+
1
d
v
=
1
x
d
x
⇒
-
v
v
2
+
v
+
1
+
1
v
2
+
v
+
1
d
v
=
1
x
d
x
⇒
-
1
2
×
2
v
+
1
-
1
v
2
+
v
+
1
+
1
v
2
+
v
+
1
d
v
=
1
x
d
x
⇒
-
1
2
×
2
v
+
1
v
2
+
v
+
1
+
1
2
×
1
v
2
+
v
+
1
+
1
v
2
+
v
+
1
d
v
=
1
x
d
x
⇒
-
1
2
×
2
v
+
1
v
2
+
v
+
1
+
3
2
×
1
v
2
+
v
+
1
d
v
=
1
x
d
x
⇒
-
1
2
×
2
v
+
1
v
2
+
v
+
1
+
3
2
×
1
v
2
+
v
+
1
4
+
3
4
d
v
=
1
x
d
x
⇒
-
1
2
×
2
v
+
1
v
2
+
v
+
1
+
3
2
×
1
v
+
1
2
2
+
3
2
2
d
v
=
1
x
d
x
Integrating
both
sides
,
we
get
⇒
∫
-
1
2
×
2
v
+
1
v
2
+
v
+
1
+
3
2
×
1
v
+
1
2
2
+
3
2
2
d
v
=
∫
1
x
d
x
⇒
-
1
2
∫
2
v
+
1
v
2
+
v
+
1
d
v
+
3
2
∫
1
v
+
1
2
2
+
3
2
2
d
v
=
∫
1
x
d
x
⇒
-
1
2
log
v
2
+
v
+
1
+
3
2
×
1
3
2
tan
-
1
v
+
1
2
3
2
=
log
x
+
C
⇒
-
1
2
log
y
x
2
+
y
x
+
1
+
3
2
×
1
3
2
tan
-
1
y
x
+
1
2
3
2
=
log
x
+
C
⇒
-
1
2
log
y
2
+
x
y
+
x
2
x
2
+
3
tan
-
1
2
y
+
x
3
x
=
log
x
+
C
⇒
-
1
2
log
y
2
+
x
y
+
x
2
+
1
2
log
x
2
+
3
tan
-
1
2
y
+
x
3
x
=
log
x
+
C
⇒
-
1
2
log
y
2
+
x
y
+
x
2
+
log
x
+
3
tan
-
1
2
y
+
x
3
x
=
log
x
+
C
⇒
-
1
2
log
y
2
+
x
y
+
x
2
+
3
tan
-
1
2
y
+
x
3
x
=
C
⇒
log
y
2
+
x
y
+
x
2
-
2
3
tan
-
1
2
y
+
x
3
x
=
-
2
C
⇒
log
y
2
+
x
y
+
x
2
=
2
3
tan
-
1
2
y
+
x
3
x
-
2
C
⇒
log
y
2
+
x
y
+
x
2
=
2
3
tan
-
1
2
y
+
x
3
x
+
k
Where
,
k
=
-
2
C
ii
We
have
,
x
cos
y
x
d
y
d
x
=
y
cos
y
x
+
x
⇒
d
y
d
x
=
y
cos
y
x
+
x
x
cos
y
x
.
.
.
.
.
1
Clearly
this
is
a
homogeneous
equation
,
Putting
y
=
v
x
⇒
d
y
d
x
=
v
+
x
d
v
d
x
Substituting
y
=
v
x
and
d
y
d
x
=
v
+
x
d
v
d
x
in
1
we
get
d
y
d
x
=
y
cos
y
x
+
x
x
cos
y
x
⇒
v
+
x
d
v
d
x
=
v
x
cos
v
+
x
x
cos
v
⇒
v
+
x
d
v
d
x
=
v
cos
v
+
1
cos
v
⇒
x
d
v
d
x
=
v
cos
v
+
1
cos
v
-
v
⇒
x
d
v
d
x
=
v
cos
v
+
1
-
v
cos
v
cos
v
⇒
x
d
v
d
x
=
1
cos
v
⇒
cos
v
d
v
=
1
x
d
x
Integrating
both
sides
,
we
get
∫
cos
v
d
v
=
∫
1
x
d
x
⇒
sin
v
=
log
x
+
log
C
⇒
sin
y
x
=
log
C
x
iii
We
have
,
y
d
x
+
x
log
y
x
d
y
-
2
x
d
y
=
0
⇒
x
log
y
x
d
y
-
2
x
d
y
=
-
y
d
x
⇒
log
y
x
-
2
x
d
y
=
-
y
d
x
⇒
d
y
d
x
=
-
y
log
y
x
-
2
x
⇒
d
y
d
x
=
y
x
2
-
log
y
x
.
.
.
.
.
1
Clearly
this
is
a
homogenous
equation
,
Putting
y
=
v
x
⇒
d
y
d
x
=
v
+
x
d
v
d
x
Substituting
y
=
v
x
and
d
y
d
x
=
v
+
x
d
v
d
x
in
1
we
get
v
+
x
d
v
d
x
=
v
2
-
log
v
⇒
x
d
v
d
x
=
v
2
-
log
v
-
v
⇒
x
d
v
d
x
=
v
-
2
v
+
v
log
v
2
-
log
v
⇒
x
d
v
d
x
=
-
v
+
v
log
v
2
-
log
v
⇒
2
-
log
v
-
v
+
v
log
v
d
v
=
1
x
d
x
⇒
log
v
-
2
v
log
v
-
v
d
v
=
-
1
x
d
x
⇒
log
v
-
1
-
1
v
log
v
-
1
d
v
=
-
1
x
d
x
⇒
log
v
-
1
v
log
v
-
1
d
v
-
1
v
log
v
-
1
d
v
=
-
1
x
d
x
⇒
1
v
d
v
-
1
v
log
v
-
1
d
v
=
-
1
x
d
x
Integrating
both
sides
we
get
∫
1
v
d
v
-
∫
1
v
log
v
-
1
d
v
=
-
∫
1
x
d
x
⇒
log
v
-
I
=
-
log
x
-
log
C
.
.
.
.
.
2
Where
,
I
=
∫
1
v
log
v
-
1
d
v
Puting
log
v
=
t
1
v
d
v
=
d
t
∴
I
=
∫
1
t
-
1
d
t
⇒
I
=
log
t
-
1
⇒
I
=
log
log
v
-
1
.
.
.
.
.
3
From
2
and
3
we
get
log
v
-
log
log
v
-
1
=
-
log
x
-
log
C
⇒
log
v
log
v
-
1
=
-
log
C
x
⇒
v
log
v
-
1
=
1
C
x
⇒
log
v
-
1
=
v
C
x
⇒
log
y
x
-
1
=
C
y
iv
We
have
,
d
y
d
x
-
y
=
cos
x
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
-
1
Q
=
cos
x
Now
,
I
.
F
.
=
e
-
1
∫
d
x
=
e
-
x
Solution
is
given
by
,
y
×
I
.
F
.
=
∫
cos
x
×
I
.
F
.
d
x
+
C
⇒
y
e
-
x
=
∫
e
-
x
cos
x
d
x
+
C
⇒
y
e
-
x
=
I
+
C
.
.
.
.
.
1
Where
,
I
=
∫
e
-
x
II
cos
x
I
d
x
.
.
.
.
.
2
⇒
I
=
cos
x
∫
e
-
x
d
x
-
∫
d
d
x
cos
x
∫
e
-
x
d
x
d
x
⇒
I
=
-
cos
x
e
-
x
-
∫
sin
x
e
-
x
d
x
⇒
I
=
-
cos
x
e
-
x
-
∫
sin
x
I
e
-
x
II
d
x
⇒
I
=
-
cos
x
e
-
x
-
sin
x
∫
e
-
x
d
x
+
∫
d
d
x
sin
x
∫
e
-
x
d
x
d
x
⇒
I
=
-
cos
x
e
-
x
+
sin
x
e
-
x
-
∫
cos
x
e
-
x
d
x
⇒
I
=
-
cos
x
e
-
x
+
sin
x
e
-
x
-
I
Using
2
⇒
2
I
=
-
cos
x
e
-
x
+
sin
x
e
-
x
⇒
I
=
1
2
-
cos
x
+
sin
x
e
-
x
.
.
.
.
.
3
From
1
and
3
,
we
get
∴
y
e
-
x
=
sin
x
-
cos
x
e
-
x
+
C
⇒
y
=
1
2
sin
x
-
cos
x
+
C
e
x
v
We
have
,
x
d
y
d
x
+
2
y
=
x
2
⇒
d
y
d
x
+
2
x
y
=
x
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
2
x
Q
=
x
Now
,
I
.
F
.
=
e
2
∫
1
x
d
x
=
e
2
log
x
=
x
2
So
,
the
solution
is
given
by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
y
x
2
=
∫
x
3
d
x
+
C
⇒
y
x
2
=
x
4
4
+
C
⇒
y
=
x
2
4
+
C
x
-
2
vi
We
have
,
d
y
d
x
+
2
y
=
sin
x
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
2
Q
=
sin
x
Now
,
I
.
F
.
=
e
2
∫
d
x
=
e
2
x
Solution
is
given
by
,
y
×
I
.
F
.
=
∫
sin
x
×
I
.
F
.
d
x
+
C
⇒
y
e
2
x
=
I
+
C
.
.
.
.
.
1
Where
,
I
=
∫
e
2
x
II
sin
x
I
d
x
.
.
.
.
.
2
⇒
I
=
sin
x
∫
e
2
x
d
x
-
∫
d
d
x
sin
x
∫
e
2
x
d
x
d
x
⇒
I
=
sin
x
e
2
x
2
-
1
2
∫
cos
x
e
2
x
d
x
⇒
I
=
sin
x
e
2
x
2
-
1
2
∫
cos
x
I
e
2
x
II
d
x
⇒
I
=
sin
x
e
2
x
2
-
1
2
cos
x
∫
e
2
x
d
x
+
1
2
∫
d
d
x
cos
x
∫
e
2
x
d
x
d
x
⇒
I
=
sin
x
e
2
x
2
-
1
4
cos
x
e
2
x
-
1
4
∫
sin
x
e
2
x
d
x
⇒
I
=
sin
x
e
2
x
2
-
1
4
cos
x
e
2
x
-
1
4
I
Using
2
⇒
I
+
1
4
I
=
1
2
sin
x
e
2
x
-
1
4
cos
x
e
2
x
⇒
5
4
I
=
1
4
2
sin
x
e
2
x
-
cos
x
e
2
x
⇒
I
=
1
5
2
sin
x
-
cos
x
e
2
x
.
.
.
.
.
3
Therefore
from
1
and
3
,
we
get
∴
y
e
2
x
=
1
5
2
sin
x
-
cos
x
e
2
x
+
C
⇒
y
=
1
5
2
sin
x
-
cos
x
+
C
e
-
2
x
vii
We
have
,
d
y
d
x
+
3
y
=
e
-
2
x
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
3
Q
=
e
-
2
x
Now
,
I
.
F
.
=
e
∫
P
d
x
=
e
3
∫
d
x
=
e
3
x
So
,
the
solution
is
given
by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
y
e
3
x
=
∫
e
3
x
×
e
-
2
x
d
x
+
C
⇒
y
e
3
x
=
e
x
+
C
⇒
y
=
e
-
2
x
+
C
e
-
3
x
viii
We
have
,
d
y
d
x
+
y
x
=
x
2
⇒
d
y
d
x
+
1
x
y
=
x
2
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
1
x
Q
=
x
2
Now
,
I
.
F
.
=
e
∫
1
x
d
x
=
e
log
x
=
x
So
,
the
solution
is
given
by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
y
x
=
∫
x
3
+
C
⇒
x
y
=
x
4
4
+
C
ix
We
have
,
d
y
d
x
+
sec
x
y
=
tan
x
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
sec
x
Q
=
tan
x
Now
,
I
.
F
.
=
e
∫
sec
x
d
x
=
e
log
sec
x
+
tan
x
=
sec
x
+
tan
x
So
,
the
solution
is
given
by
y
×
I
.
F
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
y
sec
x
+
tan
x
=
∫
sec
x
+
tan
x
tan
x
+
C
⇒
y
sec
x
+
tan
x
=
∫
sec
x
×
tan
x
d
x
+
∫
tan
2
x
d
x
+
C
⇒
y
sec
x
+
tan
x
=
∫
sec
x
×
tan
x
d
x
+
∫
sec
2
x
-
1
d
x
+
C
⇒
y
sec
x
+
tan
x
=
sec
x
+
tan
x
-
x
+
C
x
We
have
,
x
d
y
d
x
+
2
y
=
x
2
log
x
Dividing
both
sides
by
x
,
we
get
d
y
d
x
+
2
y
x
=
x
log
x
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
2
x
Q
=
x
log
x
Now
,
I
.
F
.
=
e
∫
P
d
x
=
e
∫
2
x
d
x
=
e
2
log
x
=
x
2
So
,
the
solution
is
given
by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
x
2
y
=
∫
x
3
II
log
x
I
d
x
+
C
⇒
x
2
y
=
log
x
∫
x
3
d
x
-
∫
d
d
x
log
x
∫
x
3
d
x
d
x
+
C
⇒
x
2
y
=
x
4
log
x
4
-
∫
x
3
4
d
x
+
C
⇒
x
2
y
=
x
4
log
x
4
-
x
4
16
+
C
⇒
y
=
x
2
log
x
4
-
x
2
16
+
C
x
2
⇒
y
=
x
2
16
4
log
x
-
1
+
C
x
-
2
xi
We
have
,
x
log
x
d
y
d
x
+
y
=
2
x
log
x
Dividing
both
sides
by
x
log
x
,
we
get
d
y
d
x
+
y
x
log
x
=
2
x
log
x
x
log
x
⇒
d
y
d
x
+
y
x
log
x
=
2
x
2
⇒
d
y
d
x
+
1
x
log
x
y
=
2
x
2
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
1
x
log
x
Q
=
2
x
2
Now
,
I
.
F
.
=
e
∫
P
d
x
=
e
∫
1
x
log
x
d
x
=
e
log
log
x
=
log
x
So
,
the
solution
is
given
by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
y
log
x
=
2
∫
1
x
2
×
log
x
d
x
+
C
⇒
y
log
x
=
I
+
C
.
.
.
.
.
1
Where
,
I
=
2
∫
1
x
2
II
log
x
I
d
x
⇒
I
=
2
log
x
∫
1
x
2
d
x
-
2
∫
d
d
x
log
x
∫
1
x
2
d
x
d
x
⇒
I
=
-
2
x
log
x
+
2
∫
1
x
2
d
x
⇒
I
=
-
2
x
log
x
-
2
x
.
.
.
.
.
2
From
1
and
2
we
get
∴
y
log
x
=
-
2
x
log
x
-
2
x
+
C
⇒
y
log
x
=
-
2
x
log
x
+
1
+
C
xii
We
have
,
1
+
x
2
d
y
+
2
x
y
d
x
=
cot
x
d
x
⇒
d
y
d
x
+
2
x
1
+
x
2
y
=
cot
x
1
+
x
2
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
2
x
1
+
x
2
Q
=
cot
x
1
+
x
2
Now
,
I
.
F
.
=
e
∫
2
x
1
+
x
2
d
x
=
e
log
1
+
x
2
=
1
+
x
2
So
,
the
solution
is
given
by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
y
1
+
x
2
=
∫
cot
x
1
+
x
2
×
1
+
x
2
d
x
+
C
⇒
y
1
+
x
2
=
∫
cot
x
d
x
+
C
⇒
y
1
+
x
2
=
log
sin
x
+
C
⇒
y
=
1
+
x
2
-
1
log
sin
x
+
C
1
+
x
2
-
1
xiii
We
have
,
x
+
y
d
y
d
x
=
1
⇒
d
y
d
x
=
1
x
+
y
Let
x
+
y
=
v
⇒
1
+
d
y
d
x
=
d
v
d
x
⇒
d
y
d
x
=
d
v
d
x
-
1
∴
d
v
d
x
-
1
=
1
v
⇒
d
v
d
x
=
1
v
+
1
⇒
d
v
d
x
=
1
+
v
v
⇒
v
1
+
v
d
v
=
d
x
Integrating
both
sides
,
we
get
∫
v
1
+
v
d
v
=
∫
d
x
⇒
∫
v
+
1
-
1
1
+
v
d
v
=
∫
d
x
⇒
∫
d
v
-
∫
1
1
+
v
d
v
=
∫
d
x
⇒
v
-
log
v
+
1
=
x
-
log
C
⇒
x
+
y
-
log
x
+
y
+
1
=
x
-
log
C
⇒
y
-
log
x
+
y
+
1
=
-
log
C
⇒
y
=
log
x
+
y
+
1
-
log
C
⇒
y
=
log
x
+
y
+
1
C
⇒
C
e
y
=
x
+
y
+
1
xiv
We
have
,
y
d
x
+
x
-
y
2
d
y
=
0
⇒
y
d
x
=
-
x
-
y
2
d
y
⇒
d
x
d
y
=
-
1
y
x
-
y
2
⇒
d
x
d
y
+
1
y
x
=
y
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
x
d
y
+
P
x
=
Q
where
P
=
1
y
and
Q
=
y
∴
I
.
F
.
=
e
∫
P
d
y
=
e
∫
1
y
d
y
=
e
log
y
=
y
Multiplying
both
sides
of
1
by
I
.
F
.
=
y
,
we
get
y
d
x
d
y
+
1
y
x
=
y
×
y
⇒
y
d
x
d
y
+
x
=
y
2
Integrating
both
sides
with
respect
to
y
,
we
get
x
y
=
∫
y
2
d
y
+
C
⇒
x
y
=
y
3
3
+
C
⇒
x
=
y
2
3
+
C
y
Hence
,
x
=
y
2
3
+
C
y
is
the
required
solution
.
xv
We
have
,
x
+
3
y
2
d
y
d
x
=
y
⇒
d
x
d
y
=
1
y
x
+
3
y
2
⇒
d
x
d
y
-
1
y
x
=
3
y
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
x
d
y
+
P
x
=
Q
where
P
=
-
1
y
and
Q
=
3
y
∴
I
.
F
.
=
e
∫
P
d
y
=
e
-
∫
1
y
d
y
=
e
-
log
y
=
1
y
Multiplying
both
sides
of
(
1
)
by
I
.
F
.
=
1
y
,
we
get
1
y
d
x
d
y
-
1
y
x
=
1
y
×
3
y
⇒
1
y
d
x
d
y
-
1
y
x
=
3
Integrating
both
sides
with
respect
to
y
,
we
get
x
1
y
=
∫
3
d
y
+
C
⇒
x
1
y
=
3
y
+
C
⇒
x
=
3
y
2
+
C
y
Hence
,
x
=
3
y
2
+
C
y
is
the
required
solution
.
Suggest Corrections
0
Similar questions
Q.
Find one-parameter families of solution curves of the following differential equations:
(or Solve the following differential equations)
(i)
d
y
d
x
+
3
y
=
e
m
x
, m is a given real number
(ii)
d
y
d
x
-
y
=
cos
2
x
(iii)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
(iv)
x
d
y
d
x
+
y
=
x
4
(v)
x
log
x
d
y
d
x
+
y
=
log
x
(vi)
d
y
d
x
-
2
x
y
1
+
x
2
=
x
2
+
2
(vii)
d
y
d
x
+
y
cos
x
=
e
sin
x
cos
x
(viii)
x
+
y
d
y
d
x
=
1
(ix)
d
y
d
x
cos
2
x
=
tan
x
-
y
(x)
e
-
y
sec
2
y
d
y
=
d
x
+
x
d
y
(xi)
x
log
x
d
y
d
x
+
y
=
2
log
x
(xii)
x
d
y
d
x
+
2
y
=
x
2
log
x
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
(xi)
d
y
d
x
+
y
cot
x
=
2
cos
x
,
y
π
2
=
0
(xii)
d
y
=
cos
x
2
-
y
cos
e
c
x
d
x
(xiii)
tan
x
d
y
d
x
=
2
x
tan
x
+
x
2
-
y
;
tan
x
≠
0
given that y = 0 when
x
=
π
2
.
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
(xi)
(xii)
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
Q.
Solve each of the following initial value problems:
(i) (x
2
+ y
2
) dx = 2xy dy, y (1) = 0
(ii)
x
e
y
/
x
-
y
+
x
d
y
d
x
=
0
,
y
e
=
0
(iii)
d
y
d
x
-
y
x
+
cosec
y
x
=
0
,
y
1
=
0
(iv) (xy − y
2
) dx − x
2
dy = 0, y(1) = 1
(v)
d
y
d
x
=
y
x
+
2
y
x
2
x
+
y
,
y
1
=
2
(vi) (y
4
− 2x
3
y) dx + (x
4
− 2xy
3
) dy = 0, y (1) = 1
(vii) x (x
2
+ 3y
2
) dx + y (y
2
+ 3x
2
) dy = 0, y (1) = 1
(viii)
x
sin
2
y
x
-
y
d
x
+
x
d
y
=
0
,
y
1
=
π
4
(ix)
x
d
y
d
x
-
y
+
x
sin
y
x
=
0
,
y
2
=
x
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Standard Formulae 3
MATHEMATICS
Watch in App
Explore more
Standard Formulae - 3
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app