Solve the solution: 1+4+7+10..........................+x=287
Given, 1+4+7+10..........................+x=287
We need to find the value of x,
First-term, a=1
Common difference, d=4-1=3
Sn=287
Using the formula,Sn=n2(2a+(n−1)d)
287=n2(2×1+(n-1)3)
287=n2(2+3n-3)
574=n(3n-1)
574=3n2-n
3n2-n-574=0
3n2-42n+41n-574=0
3n(n-14)+41(n-14)=0
(3n+41)(n-14)=0
(3n+41)=0orn-14=0n=-413orn=14
As number of terms cannot be negative so n=14.
Thus, x is the 14th term,
Using formula,a+(n-1)d=x
x=1+14-13x=1+13×3x=1+39x=40
IF 1+4+7+⋯+x=287, find the value of x.
Solve each of the following equations and also verify your solution :
12x+7x−6=7x+14
Solve the equation : 1+4+7+10+.…..............+x=287.