Solve the equation (1+z)8+z8=0 and shown that real part of each root of the equation is −12.
Open in App
Solution
Let (1+z)8+z8=0
or,1+zz=(−1)1/8=(cosπ+isinπ)1/8 or, 1z+1=cos(2nπ+π)8+isin(2nπ+π)8 or, 1z=−1+cosθ+isinθ where θ = (2n + 1) π8 1z=−2sin2θ2+i2sinθ2cosθ2,put−1=i2 =+i2sinθ2(cosθ2+isinθ2) ∴z=1+2isin(θ/2)(cosθ2+−isinθ2) =12(−1−icotθ2) ∵1i=−i where θ2=(2n+1)π16 and n varies from 0 to 7. Clearly real part of every roots is −12