Consider the given equation.
√4x+1+√x+3√4x+1−√x+3=41
√4x+1+√x+3√4x+1−√x+3×√4x+1+√x+3√4x+1+√x+3=41
(√4x+1+√x+3)2(√4x+1)2−(√x+3)2=41
4x+1+x+3+2√(4x+1)(x+3)(4x+1)−(x+3)=41
5x+4+2√4x2+12x+x+34x+1−x−3=41
5x+4+2√4x2+13x+33x−2=41
5x+4+2√4x2+13x+3=12x−8
2√4x2+13x+3=7x−12
4(4x2+13x+3)=49x2+144−168x
16x2+52x+12=49x2−168x+144
33x2−220x+132=0
x=220±√(220)2−4×33×13266
x=220±√48400−1742466
x=220±√3097666
x=220±17666
x=220+17666,220−17666
x=6,23
Hence, the value of x is 6,23.