The correct option is A x=nπ
∣∣
∣
∣∣a2a1sin(n+1)xsinnxsin(n−1)xcos(n+1)xcosnxcos(n−1)x∣∣
∣
∣∣=0
⇒a2[sinnx.cos(n−1)x−cosnx.sin(n−1)x]+a[sin(n−1)x.cos(n+1)x−cos(n−1)x.sin(n+1)x]+1[sin(n+1)x.cosnx−cos(n+1)x.sinnx]=0
⇒a2sinx−asin2x+sinx=0⇒sinx(a2+1−2acosx)=0⇒sinx=0orcosx=a2+12a⇒sinx=0orcosx=1(∵a2+1≥2a,a>0⇒a2+12a≥1)⇒x=nπorx=2nπ,n∈I⇒x=nπ