The given equation is,
2[ x z y t ]+3[ 1 −1 0 2 ]=3[ 3 5 4 6 ]
Simplify the above equation.
2[ x z y t ]+3[ 1 −1 0 2 ]=3[ 3 5 4 6 ] [ 2x 2z 2y 2t ]+[ 3 −3 0 6 ]=[ 9 15 12 18 ] [ 2x+3 2z−3 2y 2t+6 ]=[ 9 15 12 18 ]
Now, compare both sides of the above equation.
2x+3=9 2x=6 x=3
And
2y=12 y=6
Again,
2z−3=15 2z=18 z=9
2t+6=18 2t=12 t=6
Thus, the value of xis 3, the value of yis 6, the value of zis 9and the value of tis 6.
Solve the equation of x,y, z and t, if 2[xzyt]+3[1−102]=3[3546]
The number of integer solutions for the equation x + y + z + t = 20, where x,y,z and t are all ≥ -1 is ___.