Solve the equation: √(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12
The given equation
√(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12
or, |cos^2x-{1\over 4}|+|cos^2x-{3\over 4}|={1\over 2}\)
Case I: If cos2x≥34
then cos2x−14+cos2x−34=12
or 2cos2x−1=12
or cos2x=12=cosπ3∴2x=2nπ±π3
∴x=nπ±π6,n=0,±1,±2,........ .....(1)
Case II: If 14≤cos2x<34
then cos2x−14+34−cos2x=12⇒12=12
∴14≤cos2x<34
or, 12≤2cos2x<32 or,−12≤cos2x<12
or, cos2π3≤cos2x<cosπ3
or, 2nπ±2π3≥2x>2nπ±π3
∴nπ+π6<x≤nπ+π3 and
nπ−π3≥x>nπ−π6 ....(2)
Hence solution from (1) and (2) is
nπ+π6≤x≤nπ+π3 and
nπ−π3≤x≤nπ−π6 where n∈I.