wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following differential equation:
dydx+xy=x3y3

Open in App
Solution

dydx+xy=x3y3
1y3dydx+xy2=x3
put 1y2=t
2y3dydx=dtdx
1y3dydx=12dtdx
12dtdx+tx=x3
dtdx+(2t).x=2x3
dtdx+(2x).t=2x3
I.F=ex2
ddx(ex2.t)=2x3ex2
tex2=2x3ex2dx
tex2=2x.x2ex2dx
put x2=z
2xdx=dz
tex2=z.ezdz
1y2ex2=[zezez]+c
1y2ex2=ez(1z)+c
1y2ex2=ex2(1+x2)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Monotonicity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon