dydx+xy=x3y3
or 1y3dydx+x.1y2=x3 ....(1)
Let 1/y2=v,
Then (−2/y3)(dy/dx)=(dv/dx)
⇒−12dvdx+x.v=x3
or dvdx−2x.v=−2x3
This is linear equation in variable v.
Here P=−2x and Q=−2x3
∴I.F.=e∫Pdx=e∫−2xdx
=e−2.12x2=e−x2
∴v.(I.F.)=∫[Q.I.F.)]dx+C
i.e., v.e−x2=∫−2x3.e−x2dx+C
=−∫(−x2).e−x2.(−2x)dx+C
=−∫tetdt+C
Let −x2=t and −2xdx=dt
=−[t.et−∫etdt]+C
=(1−t)et+C
=(1+x2)e−x2[∵t=−x2]
(1/y2)e−x2=x2e−x2+e−x2+C,
( Putting v=1/y2)
y−2=1+x2+cex2