wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equation by factorisation:

x+1x-1+x-2x+2=3(x1,-2)


Open in App
Solution

Step 1: Simplifying the given equation:

We have, x+1x-1+x-2x+2=3(x1,-2)

Rearrange the equation in the form of Ax2+Bx+C=0.

x+1x-1+x-2x+2-3=0(x+1)(x+2)+(x-2)(x-1)-3(x-1)(x+2)(x-1)(x+2)=0x2+2x+x+2+x2-x-2x+2-3(x2-x+2x-2)(x-1)(x+2)=02x2+4-3x2-3x+6(x-1)(x+2)=0

After simplifying,

-x2-3x+10(x-1)(x+2)=0-x2-3x+10=0

Step 2: Factorizing the simplified equation:

-x2-3x+10=0-x2-5x+2x+10=0-x(x+5)+2(x+5)=0(-x+2)(x+5)=0

Using zero-product property find the value of x.

-x+2=0x=2

Or,

x+5=0x=-5

Therefore, the values are x=2 or, x=-5.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relation of Roots and Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon