wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations:
10(x4+1)63x(x21)+52x2=0.

Open in App
Solution

10(x4+1)63x(x21)+52x2=0

10x463x3+52x2+63x+10=0

Replace x by 1x

10x4+63x3+52x263x+10=0

10+63x+52x263x3+10x4x4=0

10+63x+52x263x3+10x4=0

On replacing x by 1x the equation become same , so the roots of the equation are of form

α,1α,β,1β

α+(1α)+β+(1β)=ba

α1α+β1β=6310=6310 ........(i)

α.(1α)+αβ+α(1β)+β(1α)+(1α)(1β)+β(1β)=ca

1+αβαββα+1αβ1=5210

α(β1β)1α(β1β)=5210+2

(α1α)(β1β)=7210...........(ii)

using (i)

(α1α)(6310(α1α))=7210

Put (α1α)=t

t(6310t)=7210

63t10t2=72

10t263t+72=0

t=63±63×634(10)7220=63±3320

t=245,32

(1) t=32

α1α=32

2α22=3α

2α23α2=02α24α+α2=0

2α(α2)+1(α2)=0

(2α+1)(α2)=0

α=2,12

(2) t=245

α1α=245

5α25=24α5α224α5=05α225α+α5=05α(α5)+1(α5)=0(5α+1)(α5)=0α=5,15

So, the values of x are 2,12,5,15.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Common Factors
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon