10(x4+1)−63x(x2−1)+52x2=0
10x4−63x3+52x2+63x+10=0
Replace x by −1x
10x4+63x3+52x2−63x+10=0
10+63x+52x2−63x3+10x4x4=0
10+63x+52x2−63x3+10x4=0
On replacing x by −1x the equation become same , so the roots of the equation are of form
α,−1α,β,−1β
α+(−1α)+β+(−1β)=−ba
α−1α+β−1β=−−6310=6310 ........(i)
α.(−1α)+αβ+α(−1β)+β(−1α)+(−1α)(−1β)+β(−1β)=ca
−1+αβ−αβ−βα+1αβ−1=5210
α(β−1β)−1α(β−1β)=5210+2
(α−1α)(β−1β)=7210...........(ii)
using (i)
(α−1α)(6310−(α−1α))=7210
Put (α−1α)=t
t(6310−t)=7210
63t−10t2=72
10t2−63t+72=0
t=63±√−63×−63−4(10)7220=63±3320
⇒t=245,32
(1) t=32
α−1α=32
2α2−2=3α
2α2−3α−2=02α2−4α+α−2=0
2α(α−2)+1(α−2)=0
(2α+1)(α−2)=0
α=2,−12
(2) t=245
α−1α=245
5α2−5=24α5α2−24α−5=05α2−25α+α−5=05α(α−5)+1(α−5)=0(5α+1)(α−5)=0α=5,−15
So, the values of x are 2,−12,5,−15.