Squaring both sides, we get
(√2x−4−√x+5)2=1 which is of the form (a−b)2
⇒(√2x−4)2+(√x+5)2−2√(2x−4)(x+5)=1 using
(a−b)2=a2+b2−2ab
⇒2x−4+x+5−2√(2x−4)(x+5)=1
⇒3x+1−2√(2x−4)(x+5)−1=0
⇒3x−2√(2x−4)(x+5)=0
⇒2√(2x−4)(x+5)=3x
squaring both sides, we get
4(2x−4)(x+5)=9x2
⇒x2−24x+80=0 on simplifying
⇒(x−20)(x−4)=0
∴x=20,4
But for the value x=20, we have
√2x−4−√x+5=√2×20−4−√20+5=√40−4−√25=√16−√25=4−5≠1
and for x=4 we have
√2x−4−√x+5=√2×4−4−√4+5=√8−4−√9=√4−√9=2−3≠1
Since L.H.S≠ R.H.S x=4,20 is not the solution to above problem.