Solve the following equations:
x2+xy+y2=84,
x−√xy+y=6.
x−√xy+y=6x+y=6+√xy ........(i)
x2+y2+xy=84 ......(ii)
Using (a+b)2=a2+b2+2ab
(x+y)2−xy=84 ........(iii)
Substituting (i) in (iii), we get
(6+√xy)2−xy=8436+xy+12√xy−xy=8412√xy=48√xy=4⇒xy=16y=16x
Substituting y in (ii), we get
x2+(16x)2+x.16x=84
⇒x2+256x2=68
⇒x4+256=68x2
⇒x4−68x2+256=0
⇒x4−4x2−64x2+256=0
⇒x2(x2−4)−64(x2−4)=0
⇒(x2−4)(x2−64)=0
⇒x2=4,64
⇒x=√4,√64
⇒x=±2,±8
Negative values do not satisfy equation (i), so they are not included.
So, x=2,8
Now y=16x
⇒x= 2
⇒y=16 2= 8
⇒x= 8
⇒y=16 8= 2
So, the values of x are 2,8 and corresponding values of y are 8,2.