Solve the following equations:
y(y2−3xy−x2)+24=0,x(y2−4xy+2x2)+8=0.
y(y2−3xy−x2)+24=0y2−3xy−x2=−24y.......(i)x(y2−4xy+2x2)+8=0y2−4xy+2x2=−8x......(ii)
susbtrscting (ii) from (i)
⇒xy−3x2=(8x−24y)x(y−3x)=8(y−3xxy)x2y(y−3x)=8(y−3x)x2y(y−3x)−8(y−3x)=0(x2y−8)(y−3x)=0y=3x,8x2
substituting y in (i)
(1) y=3x
3x((3x)2−3x(3x)−x2)+24=0−3x3=−24x3=8⇒x=2y=3x⇒y=6
(2) y=8x2
8x2((8x2)2−3x(8x2)−x2)+24=064x4−24x−x2+3x2=0x6−12x3+32=0x6−4x3−8x3+32=0x3(x3−4)−8(x3−4)=0(x3−4)(x3−8)=0x3=4,8⇒x=3√4,2y=8x2x=2⇒y=2x=3√4⇒y=23√4
So the values of x are 2,3√4,2 and the corresponding values of y are 6,23√4,2