27x−2+31y+3=85 ...... (1)
31x−2+27y+3=89 ...... (2)
Substituting 1x−2=m and 1y+3=n in the above equations
We get
27m+31n=85 ....... (3)
31m+27n=89 ....... (4)
Multiplying equation (3) by 31 and equation (4) by 27, we get
837m+961n=2635
837m+729n=2403
- - -
..............................
232n=232
n=1
Substituting n=1 in equation (3), we get
27m+31=85
27m=54
m=2
Resubstituting the values of m and n, we get
1x−2=2 and 1y+3=1
1=2(x−2)∴y+3=1
2x−4=1 y=−2
2x=5
x=52