1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Bisectors of Angle between Two Lines
Solve the fol...
Question
Solve the following system of equations by matrix method:
(i) x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
(ii) x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
(iii) 6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
(iv) 3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
(v)
2
x
-
3
y
+
3
z
=
10
1
x
+
1
y
+
1
z
=
10
3
x
-
1
y
+
2
z
=
13
(vi) 5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
(vii) 3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
(viii) 2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
(ix) 2x + 6y = 2
3x − z = −8
2x − y + z = −3
(x) x − y + z = 2
2x − y = 0
2y − z = 1
(xi) 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
(xii) x + y + z = 6
x + 2z = 7
3x + y + z = 12
(xiii)
2
x
+
3
y
+
10
z
=
4
,
4
x
-
6
y
+
5
z
=
1
,
6
x
+
9
y
-
20
z
=
2
;
x
,
y
,
z
≠
0
Open in App
Solution
(i)
Here,
A
=
1
1
-
1
2
3
1
3
-
1
-
7
A
=
1
1
-
1
2
3
1
3
-
1
-
7
=
1
-
21
+
1
-
1
-
14
-
3
-
1
(
-
2
-
9
)
=
-
20
+
17
+
11
=
8
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
3
1
-
1
-
7
=
-
20
,
C
12
=
-
1
1
+
2
2
1
3
-
7
=
17
,
C
13
=
-
1
1
+
3
2
3
3
-
1
=
-
11
C
21
=
-
1
2
+
1
1
-
1
-
1
-
7
=
8
,
C
22
=
-
1
2
+
2
1
-
1
3
-
7
=
-
4
,
C
23
=
-
1
2
+
3
1
1
3
-
1
=
4
C
31
=
-
1
3
+
1
1
-
1
3
1
=
4
,
C
32
=
-
1
3
+
2
1
-
1
2
1
=
-
3
,
C
33
=
-
1
3
+
3
1
1
2
3
=
1
adj
A
=
-
20
17
-
11
8
-
4
4
4
-
3
1
T
=
-
20
8
4
17
-
4
-
3
-
11
4
1
⇒
A
-
1
=
1
A
a
d
j
A
=
1
8
-
20
8
4
17
-
4
-
3
-
11
4
1
X
=
A
-
1
B
⇒
x
y
z
=
1
8
-
20
8
4
17
-
4
-
3
-
11
4
1
3
10
1
⇒
x
y
z
=
1
8
-
60
+
80
+
4
51
-
40
-
3
-
33
+
40
+
1
⇒
x
y
z
=
1
8
24
8
8
⇒
x
=
24
8
,
y
=
8
8
and
z
=
8
8
∴
x
=
3
,
y
=
1
and
z
=
1
(ii)
Here,
A
=
1
1
1
2
-
1
1
2
1
-
3
A
=
1
1
1
2
-
1
1
2
1
-
3
=
1
3
-
1
-
1
-
6
-
2
+
1
(
2
+
2
)
=
2
+
8
+
4
=
14
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
-
1
1
1
-
3
=
2
,
C
12
=
-
1
1
+
2
2
1
2
-
3
=
8
,
C
13
=
-
1
1
+
3
2
-
1
2
1
=
4
C
21
=
-
1
2
+
1
1
1
1
-
3
=
4
,
C
22
=
-
1
2
+
2
1
1
2
-
3
=
-
5
,
C
23
=
-
1
2
+
3
1
1
2
1
=
1
C
31
=
-
1
3
+
1
1
1
-
1
1
=
2
,
C
32
=
-
1
3
+
2
1
1
2
1
=
1
,
C
33
=
-
1
3
+
3
1
1
2
-
1
=
-
3
adj
A
=
2
8
4
4
-
5
1
2
1
-
3
T
=
2
4
2
8
-
5
1
4
1
-
3
⇒
A
-
1
=
1
A
adj
A
=
1
14
2
4
2
8
-
5
1
4
1
-
3
X
=
A
-
1
B
⇒
x
y
z
=
1
14
2
4
2
8
-
5
1
4
1
-
3
3
-
1
-
9
⇒
x
y
z
=
1
14
6
-
4
-
18
24
+
5
-
9
12
-
1
+
27
⇒
x
y
z
=
1
14
-
16
20
38
⇒
x
=
-
16
14
,
y
=
20
14
and
z
=
38
14
∴
x
=
-
8
7
,
y
=
10
7
and
z
=
19
7
(iii)
Here,
A
=
6
-
12
25
4
15
-
20
2
18
15
A
=
6
-
12
25
4
15
-
20
2
18
15
=
6
225
+
360
+
12
60
+
40
+
25
(
72
-
30
)
=
3510
+
1200
+
1050
=
5760
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
15
-
20
18
15
=
585
,
C
12
=
-
1
1
+
2
4
-
20
2
15
=
-
100
,
C
13
=
-
1
1
+
3
4
15
2
18
=
42
C
21
=
-
1
2
+
1
-
12
25
18
15
=
630
,
C
22
=
-
1
2
+
2
6
25
2
15
=
40
,
C
23
=
-
1
2
+
3
6
-
12
2
18
=
-
132
C
31
=
-
1
3
+
1
-
12
25
15
-
20
=
-
135
,
C
32
=
-
1
3
+
2
6
25
4
-
20
=
220
,
C
33
=
-
1
3
+
3
6
-
12
4
15
=
138
adj
A
=
585
-
100
42
630
40
-
132
-
135
220
138
T
=
585
630
-
135
-
100
40
220
42
-
132
138
⇒
A
-
1
=
1
A
adj
A
=
1
5760
585
630
-
135
-
100
40
220
42
-
132
138
X
=
A
-
1
B
⇒
x
y
z
=
1
5760
585
630
-
135
-
100
40
220
42
-
132
138
4
3
10
⇒
x
y
z
=
1
5760
2340
+
1890
-
1350
-
400
+
120
+
2200
168
-
396
+
1380
⇒
x
y
z
=
1
5760
2880
1920
1152
⇒
x
=
2880
5760
,
y
=
1920
5760
and
z
=
1152
5760
∴
x
=
1
2
,
y
=
1
3
and
z
=
1
5
(iv)
Here,
A
=
3
4
7
2
-
1
3
2
1
-
3
A
=
3
4
7
2
-
1
3
2
1
-
3
=
3
3
-
3
-
4
-
6
-
6
+
7
(
2
+
2
)
=
0
+
48
+
28
=
76
Let C
i
j
be the cofactors of elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
-
1
3
1
-
3
=
0
,
C
12
=
-
1
1
+
2
2
3
2
-
3
=
12
,
C
13
=
-
1
1
+
3
2
-
1
2
1
=
4
C
21
=
-
1
2
+
1
4
7
1
-
3
=
19
,
C
22
=
-
1
2
+
2
3
7
2
-
3
=
-
23
,
C
23
=
-
1
2
+
3
3
4
2
1
=
5
C
31
=
-
1
3
+
1
4
7
-
1
3
=
19
,
C
32
=
-
1
3
+
2
3
7
2
3
=
5
,
C
33
=
-
1
3
+
3
3
4
2
-
1
=
-
11
adj
A
=
0
12
4
19
-
23
5
19
5
-
11
T
=
0
19
19
12
-
23
5
4
5
-
11
⇒
A
-
1
=
1
A
adj
A
=
1
76
0
19
19
12
-
23
5
4
5
-
11
X
=
A
-
1
B
⇒
x
y
z
=
1
76
0
19
19
12
-
23
5
4
5
-
11
14
4
0
⇒
x
y
z
=
1
76
0
+
76
+
0
168
-
92
+
0
56
+
20
+
0
⇒
x
y
z
=
1
76
76
76
76
⇒
x
=
76
76
,
y
=
76
76
and
z
=
76
76
∴
x
=
1
,
y
=
1
and
z
=
1
(v)
Let
1
x
be
a
,
1
y
be
b
and
1
z
be
c.
Here,
A
=
2
-
3
3
1
1
1
3
-
1
2
A
=
2
-
3
3
1
1
1
3
-
1
2
=
2
2
+
1
+
3
2
-
3
+
3
(
-
1
-
3
)
=
6
-
3
-
12
=
-
9
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
1
1
-
1
2
=
3
,
C
12
=
-
1
1
+
2
1
1
3
2
=
1
,
C
13
=
-
1
1
+
3
1
1
3
-
1
=
-
4
C
21
=
-
1
2
+
1
-
3
3
-
1
2
=
3
,
C
22
=
-
1
2
+
2
2
3
3
2
=
-
5
,
C
23
=
-
1
2
+
3
2
-
3
3
-
1
=
-
7
C
31
=
-
1
3
+
1
-
3
3
1
1
=
-
6
,
C
32
=
-
1
3
+
2
2
3
1
1
=
1
,
C
33
=
-
1
3
+
3
2
-
3
1
1
=
5
adj
A
=
3
1
-
4
3
-
5
-
7
-
6
1
5
T
=
3
3
-
6
1
-
5
1
-
4
-
7
5
⇒
A
-
1
=
1
A
adj
A
=
1
-
9
3
3
-
6
1
-
5
1
-
4
-
7
5
X
=
A
-
1
B
⇒
a
b
c
=
1
-
9
3
3
-
6
1
-
5
1
-
4
-
7
5
10
10
13
⇒
a
b
c
=
1
-
9
30
+
30
-
78
10
-
50
+
13
-
40
-
70
+
65
⇒
a
b
c
=
1
-
9
-
18
-
27
-
45
⇒
x
=
1
a
=
-
9
-
18
,
y
=
1
b
=
-
9
-
27
and
z
=
1
c
=
-
9
-
45
∴
x
=
1
a
=
1
2
,
y
=
1
b
=
1
3
and
z
=
1
c
=
1
5
(vi)
Here,
A
=
5
3
1
2
1
3
1
2
4
A
=
5
3
1
2
1
3
1
2
4
=
5
4
-
6
-
3
8
-
3
+
1
(
4
-
1
)
=
-
10
-
15
+
3
=
-
22
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
1
3
2
4
=
-
2
,
C
12
=
-
1
1
+
2
2
3
1
4
=
-
5
,
C
13
=
-
1
1
+
3
2
1
1
2
=
3
C
21
=
-
1
2
+
1
3
1
2
4
=
-
10
,
C
22
=
-
1
2
+
2
5
1
1
4
=
19
,
C
23
=
-
1
2
+
3
5
3
1
2
=
-
7
C
31
=
-
1
3
+
1
3
1
1
3
=
8
,
C
32
=
-
1
3
+
2
5
1
2
3
=
-
13
,
C
33
=
-
1
3
+
3
5
3
2
1
=
-
1
adj
A
=
-
2
-
5
3
-
10
19
-
7
8
-
13
-
1
T
=
-
2
-
10
8
-
5
19
-
13
3
-
7
-
1
⇒
A
-
1
=
1
A
adj
A
=
1
-
22
-
2
-
10
8
-
5
19
-
13
3
-
7
-
1
X
=
A
-
1
B
⇒
x
y
z
=
1
-
22
-
2
-
10
8
-
5
19
-
13
3
-
7
-
1
16
19
25
⇒
x
y
z
=
1
-
22
-
32
-
190
+
200
-
80
+
361
-
325
48
-
133
-
25
⇒
x
y
z
=
1
-
22
-
22
-
44
-
110
⇒
x
=
-
22
-
22
,
y
=
-
44
-
22
and
z
=
-
110
-
22
∴
x
=
1
,
y
=
2
and
z
=
5
(vii)
Here,
A
=
3
4
2
0
2
-
3
1
-
2
6
A
=
3
4
2
0
2
-
3
1
-
2
6
=
3
12
-
6
-
4
0
+
3
+
2
(
0
-
2
)
=
18
-
12
-
4
=
2
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
2
-
3
-
2
6
=
6
,
C
12
=
-
1
1
+
2
0
-
3
1
6
=
-
3
,
C
13
=
-
1
1
+
3
0
2
1
-
2
=
-
2
C
21
=
-
1
2
+
1
4
2
-
2
6
=
-
28
,
C
22
=
-
1
2
+
2
3
2
1
6
=
16
,
C
23
=
-
1
2
+
3
3
4
1
-
2
=
10
C
31
=
-
1
3
+
1
4
2
2
-
3
=
-
16
,
C
32
=
-
1
3
+
2
3
2
0
-
3
=
9
,
C
33
=
-
1
3
+
3
3
4
0
2
=
6
adj
A
=
6
-
3
-
2
-
28
16
10
-
16
9
6
T
=
6
-
28
-
16
-
3
16
9
-
2
10
6
⇒
A
-
1
=
1
A
adj
A
=
1
2
6
-
28
-
16
-
3
16
9
-
2
10
6
X
=
A
-
1
B
⇒
x
y
z
=
1
2
6
-
28
-
16
-
3
16
9
-
2
10
6
8
3
-
2
⇒
x
y
z
=
1
2
48
-
84
+
32
-
24
+
48
-
18
-
16
+
30
-
12
⇒
x
y
z
=
1
2
-
4
6
2
⇒
x
=
-
4
2
,
y
=
6
2
and
z
=
2
2
∴
x
=
-
2
,
y
=
3
and
z
=
1
(
viiii
)
Here
,
A
=
2
1
1
1
3
-
1
3
1
-
2
A
=
2
1
1
1
3
-
1
3
1
-
2
=
2
-
6
+
1
-
1
-
2
+
3
+
1
(
1
-
9
)
=
-
10
-
1
-
8
=
-
19
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
3
-
1
1
-
2
=
-
5
,
C
12
=
-
1
1
+
2
1
-
1
3
-
2
=
-
1
,
C
13
=
-
1
1
+
3
1
3
3
1
=
-
8
C
21
=
-
1
2
+
1
1
1
1
-
2
=
3
,
C
22
=
-
1
2
+
2
2
-
1
3
-
2
=
-
7
,
C
23
=
-
1
2
+
3
2
1
3
1
=
1
C
31
=
-
1
3
+
1
1
1
3
-
1
=
-
4
,
C
32
=
-
1
3
+
2
2
1
1
-
1
=
3
,
C
33
=
-
1
3
+
3
2
1
1
3
=
5
adj
A
=
-
5
-
1
-
8
3
-
7
1
-
4
3
5
T
=
-
5
3
-
4
-
1
-
7
3
-
8
1
5
⇒
A
-
1
=
1
A
adj
A
=
1
-
19
-
5
3
-
4
-
1
-
7
3
-
8
1
5
X
=
A
-
1
B
⇒
x
y
z
=
1
-
19
-
5
3
-
4
-
1
-
7
3
-
8
1
5
2
5
6
⇒
x
y
z
=
1
-
19
-
10
+
15
-
24
-
2
-
35
+
18
-
16
+
5
+
30
⇒
x
y
z
=
1
-
19
-
19
19
19
⇒
x
=
-
19
-
19
,
y
=
19
-
19
and
z
=
19
-
19
∴
x
=
1
,
y
=
3
and
z
=
-
1
(
ix
)
Here
,
A
=
2
6
0
3
0
-
1
2
-
1
1
A
=
2
6
0
3
0
-
1
2
-
1
1
=
2
0
-
1
-
6
3
+
2
+
0
(
-
3
+
0
)
=
-
2
-
30
=
-
32
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
0
-
1
-
1
1
=
-
1
,
C
12
=
-
1
1
+
2
3
-
1
2
1
=
-
5
,
C
13
=
-
1
1
+
3
3
0
2
-
1
=
-
3
C
21
=
-
1
2
+
1
6
0
-
1
1
=
-
6
,
C
22
=
-
1
2
+
2
2
0
2
1
=
2
,
C
23
=
-
1
2
+
3
2
6
2
-
1
=
14
C
31
=
-
1
3
+
1
6
0
0
-
1
=
-
6
,
C
32
=
-
1
3
+
2
2
0
3
-
1
=
2
,
C
33
=
-
1
3
+
3
2
6
3
0
=
-
18
adj
A
=
-
1
-
5
-
3
-
6
2
14
-
6
2
-
18
T
=
-
1
-
6
-
6
-
5
2
2
-
3
14
-
18
⇒
A
-
1
=
1
A
adj
A
=
1
-
32
-
1
-
6
-
6
-
5
2
2
-
3
14
-
18
X
=
A
-
1
B
⇒
x
y
z
=
1
-
32
-
1
-
6
-
6
-
5
2
2
-
3
14
-
18
2
-
8
-
3
⇒
x
y
z
=
1
-
32
-
2
+
48
+
18
-
10
-
16
-
6
-
6
-
112
+
54
⇒
x
y
z
=
1
-
32
64
-
32
-
64
⇒
x
=
64
-
32
,
y
=
-
32
-
32
and
z
=
-
64
-
32
∴
x
=
-
2
,
y
=
1
and
z
=
2
(
x
)
Here
,
A
=
1
-
1
1
2
-
1
0
0
2
-
1
A
=
1
-
1
1
2
-
1
0
0
2
-
1
=
1
1
-
0
+
1
-
2
-
0
+
1
(
4
-
0
)
=
1
-
2
+
4
=
3
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
-
1
0
2
-
1
=
1
,
C
12
=
-
1
1
+
2
2
0
0
-
1
=
2
,
C
13
=
-
1
1
+
3
2
-
1
0
2
=
4
C
21
=
-
1
2
+
1
-
1
1
2
-
1
=
1
,
C
22
=
-
1
2
+
2
1
1
0
-
1
=
-
1
,
C
23
=
-
1
2
+
3
1
-
1
0
2
=
-
2
C
31
=
-
1
3
+
1
-
1
1
-
1
0
=
1
,
C
32
=
-
1
3
+
2
1
1
2
0
=
2
,
C
33
=
-
1
3
+
3
1
-
1
2
-
1
=
1
adj
A
=
1
2
4
1
-
1
-
2
1
2
1
T
=
1
1
1
2
-
1
2
4
-
2
1
⇒
A
-
1
=
1
A
adj
A
=
1
1
1
1
1
2
-
1
2
4
-
2
1
X
=
A
-
1
B
⇒
x
y
z
=
1
3
1
1
1
2
-
1
2
4
-
2
1
2
0
1
⇒
x
y
z
=
1
3
2
+
1
4
+
2
8
+
1
⇒
x
y
z
=
1
1
3
6
9
⇒
x
=
3
3
,
y
=
6
3
and
z
=
9
3
∴
x
=
1
,
y
=
2
and
z
=
3
(
xi
)
Here
,
A
=
8
4
3
2
1
1
1
2
1
A
=
8
4
3
2
1
1
1
2
1
=
8
1
-
2
-
4
2
-
1
+
3
(
4
-
1
)
=
-
8
-
4
+
9
=
-
3
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
1
1
2
1
=
-
1
,
C
12
=
-
1
1
+
2
2
1
1
1
=
-
1
,
C
13
=
-
1
1
+
3
2
1
1
2
=
3
C
21
=
-
1
2
+
1
4
3
2
1
=
2
,
C
22
=
-
1
2
+
2
8
3
1
1
=
5
,
C
23
=
-
1
2
+
3
8
4
1
2
=
-
12
C
31
=
-
1
3
+
1
4
3
1
1
=
1
,
C
32
=
-
1
3
+
2
8
3
2
1
=
-
2
,
C
33
=
-
1
3
+
3
8
4
2
1
=
0
adj
A
=
-
1
-
1
3
2
5
-
12
1
-
2
0
T
=
-
1
2
1
-
1
5
-
2
3
-
12
0
⇒
A
-
1
=
1
A
adj
A
=
1
-
3
-
1
2
1
-
1
5
-
2
3
-
12
0
X
=
A
-
1
B
⇒
x
y
z
=
1
-
3
-
1
2
1
-
1
5
-
2
3
-
12
0
18
5
5
⇒
x
y
z
=
1
-
3
-
18
+
10
+
5
-
18
+
25
-
10
54
-
60
⇒
x
y
z
=
1
-
3
-
3
-
3
-
6
⇒
x
=
-
3
-
3
,
y
=
-
3
-
3
and
z
=
-
6
-
3
∴
x
=
1
,
y
=
1
and
z
=
2
(
xii
)
Here
,
A
=
1
1
1
1
0
2
3
1
1
A
=
1
1
1
1
0
2
3
1
1
=
1
0
-
2
-
1
1
-
6
+
1
(
1
-
0
)
=
-
2
+
5
+
1
=
4
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
0
2
1
1
=
-
2
,
C
12
=
-
1
1
+
2
1
2
3
1
=
5
,
C
13
=
-
1
1
+
3
1
0
3
1
=
1
C
21
=
-
1
2
+
1
1
1
1
1
=
0
,
C
22
=
-
1
2
+
2
1
1
3
1
=
-
2
,
C
23
=
-
1
2
+
3
1
1
3
1
=
2
C
31
=
-
1
3
+
1
1
1
0
2
=
2
,
C
32
=
-
1
3
+
2
1
1
1
2
=
-
1
,
C
33
=
-
1
3
+
3
1
1
1
0
=
-
1
adj
A
=
-
2
5
1
0
-
2
2
2
-
1
-
1
T
=
-
2
0
2
5
-
2
-
1
1
2
-
1
⇒
A
-
1
=
1
A
adj
A
=
1
4
-
2
0
2
5
-
2
-
1
1
2
-
1
X
=
A
-
1
B
⇒
x
y
z
=
1
4
-
2
0
2
5
-
2
-
1
1
2
-
1
6
7
12
⇒
x
y
z
=
1
4
-
12
+
0
+
24
30
-
14
-
12
6
-
14
-
12
⇒
x
y
z
=
1
4
12
4
-
20
⇒
x
=
12
4
,
y
=
4
4
and
z
=
-
20
4
∴
x
=
3
,
y
=
1
and
z
=
-
5
(xiii)
Let
1
x
be
a,
1
y
be
b
and
1
z
be
c.
Here,
A
=
2
3
10
4
-
6
5
6
9
-
20
A
=
2
3
10
4
-
6
5
6
9
-
20
=
2
120
-
45
-
3
-
80
-
30
+
10
(
36
+
36
)
=
150
+
330
+
720
=
1200
Let C
i
j
be the cofactors of the elements a
i
j
in A
a
i
j
. Then,
C
11
=
-
1
1
+
1
-
6
5
9
-
20
=
75
,
C
12
=
-
1
1
+
2
4
5
6
-
20
=
110
,
C
13
=
-
1
1
+
3
4
-
6
6
9
=
72
C
21
=
-
1
2
+
1
3
10
9
-
20
=
150
,
C
22
=
-
1
2
+
2
2
10
6
-
20
=
-
100
,
C
23
=
-
1
2
+
3
2
3
6
9
=
0
C
31
=
-
1
3
+
1
3
10
-
6
5
=
75
,
C
32
=
-
1
3
+
2
2
10
4
5
=
30
,
C
33
=
-
1
3
+
3
2
3
4
-
6
=
-
24
adj
A
=
75
110
72
150
-
100
0
75
30
-
24
T
=
75
150
75
110
-
100
30
72
0
-
24
⇒
A
-
1
=
1
A
adj
A
=
1
1200
75
150
75
110
-
100
30
72
0
-
24
X
=
A
-
1
B
⇒
a
b
c
=
1
1200
75
150
75
110
-
100
30
72
0
-
24
4
1
2
⇒
a
b
c
=
1
1200
300
+
150
+
150
440
-
100
+
60
288
-
48
⇒
a
b
c
=
1
1200
600
400
240
⇒
x
=
1
a
=
1200
600
,
y
=
1
b
=
1200
400
and
z
=
1
c
=
1200
240
∴
x
=
2
,
y
=
3
and
z
=
5
Suggest Corrections
0
Similar questions
Q.
Solve by matrix method:
2
x
+
3
y
+
3
z
=
5
x
−
2
y
+
z
=
−
4
3
x
−
y
−
2
z
=
3
Q.
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
Q.
Solve:-
x
−
2
y
+
3
z
=
11
3
x
+
y
−
z
=
2
5
x
+
3
y
+
2
z
=
3
Q.
Show that each of the following systems of linear equations is consistent and also find their solutions:
(i) 6x + 4y = 2
9x + 6y = 3
(ii) 2x + 3y = 5
6x + 9y = 15
(iii) 5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
(iv) x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
(v) x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
(vi) 2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Q.
Solve the system of equations, using matrix method
2
x
+
3
y
+
3
z
=
5
,
x
−
2
y
+
z
=
−
4
,
3
x
−
y
−
2
z
=
3
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Angle Bisectors
MATHEMATICS
Watch in App
Explore more
Bisectors of Angle between Two Lines
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app