Solve the following system of linear equations forxandy
xa+yb=2;bx-ay=a+b
Step 1: Simplifying the equation by taking the LCM
Given,
xa+yb=2⇒bx+ayab=2[takingabasLCM]⇒bx+ay=2ab⇒bx+ay=2ab..........(1)bx-ay=a+b..........(2)
Step 2: Applying elimination method
(1)+(2)
⇒2bx=a+b+2ab⇒x=a+b+2ab2b
Step 3:To find the value of y
Substituting the value of x=a+b+2ab2b in equation (1)
b[a+b+2ab2b]+ay=2ab⇒a+b+2ab2-2ab=-ay⇒a+b+2ab-4ab2a=-y⇒2ab-a-b2a=y
Hence the values of x=a+b+2ab2bandy=2ab-a-b2a
Solve the following system of linear equations for xandy
ax+by=a-b;bx-ay=a+b