Solve the given expansion.
(1+2x−3x2)4
(1+2x−3x2)4=[1+(2x−3x2)]4
=(1+y)4, where 2x−3x2=y
=4C0+4C1y+4C2y2+4C3y3+4C4y4
=1+4y+6y2+4y3+y4
=1+4(2x−3x2)+6(2x−3x2)2+4(2x−3x2)3+(2x−3x2)4
=1+(8x−12x2)+6[2C0(2x)2−2C1(2x)(3x)2+2C2(3x2)2]
+4[3C0(2x)3−3C1(2x)2(3x)2+3C2(2x)(3x2)2−3C3(3x2)3]
+[4C0(2x)4−4C1(2x)3(3x2)+4C2(2x)2(3x2)2−4C3(2x)(3x2)3+4C4(3x2)4]
=1+(8x−12x2)+6(4x2−12x3+9x4)+4(8x3−36x4+54x5−27x6)
+(16x4−96x5+216x6−216x7+81x8)
=1+(8x−12x2)+(24x2−72x3+54x4)+(32x3−144x4+216x5−108x6)
+(16x4−96x5+216x6−216x7+81x8)
=81x8−216x7+108x6+120x5−74x4−40x3+12x2+8x+1