Given, 2x−13≥3x−24−2−x5
⇒2x−13≥5(3x−2)−4(2−x)20
⇒2x−13≥15x−10−8+4x20
⇒20(2x−1)≥3(19x−18)
⇒40x−20≥57x−54
⇒40x−57x≥20−54
⇒−17x≥−34
⇒−x≥−3417
⇒−x≥−2
Multiply both sides by −1 also reverse the inequality signs.
⇒(−1)×(−x)≤(−1)×(−2)
⇒x≤2
Since x is a real number which is less than or equal to 2.
The solution set is x∈(−∞,2]