The correct option is
A (−∞,−34)∪(134,∞)Given inequality is,
|5−4x|>8
Case i) Value of x is positive-
∴|5−4x|=5−4x
∴5−4x>8
Adding 4x to both sides, we get,
5−4x+4x>8+4x
∴5>8+4x
Subtract 8 from both sides,
∴5−8>8+4x−8
∴−3>4x
∴x<−34
Thus, an interval is, (−∞,−34)
Case ii) Value of x is negative-
∴|5−4x|=−(5−4x)
∴|5−4x|=4x−5
∴4x−5>8
Adding 5 to both sides, we get,
∴4x−5+5>8+5
∴4x>13
∴x>134
Thus, an interval is, (134,∞)
Thus, combining both the results, we get,
(−∞,−34)⋃(134,∞)
Answer is Option (B)