The correct option is A (10951,−151102)
The given equations are:
7x+2y=12 ...(a)
2x−14y=25 ...(b)
To eliminate x, multiply equation (a) by 2, and equation (b) by 7.
[7x+2y=12]×2
⇒14x+4y=24 ...(c)
[2x−14y=25]×7
⇒14x−98y=175 ...(d)
Now, substract (d) from (c).
(14x+4y)-(14x-98y)=24-175
⇒14x+4y−14x+98y=−151
⇒102y=−151
⇒y=−151102
Substituting value of y in (a) we get,
7x+2(−151102)=12
⇒7x−15151=12
⇒7x=12+15151
⇒7x=51×12+15151
⇒7x=76351
⇒x=10951
∴ (10951,−151102) is the solution.