The correct option is A x∈[1−√5,0)∪(12, −1+√17)
x2+2|x−3|−10<0, .....(1)
∣∣x2−4x∣∣+3x2+|x−5|≥1 ....(2)
For inequality (1),
Whenx<3
x2−2(x−3)−10<0
x2−2x−4<0
x∈(1−√5,1+√5)
But since, x<3
So, x∈(1−√5,3)
When x≥3
x2+2(x−3)−10<0
x2+2x−16<0
x∈(−1−√17,−1+√17)
But since, x≥3
⇒x∈[3,−1+√17)
So, the solution of inequality (1) is (1−√5,−1+√17)
For inequality (2),
When x<0
x2−4x+3x2−(x−5)≥1
x2−4x+3≥x2−x+5
⇒x≤−23
x∈(−∞,−23]
⇒x∈(−∞,0)
When 0≤x<4
−(x2−4x)+3x2−(x−5)≥1
⇒2x2−5x+2≤0
x∈[12,4)
When4≤x<5
(x2−4x)+3x2−(x−5)≥1
⇒x2−4x+3≥x2−x+5
⇒x≤−23
x∈(−∞,−23]
Hence, no solution.
Whenx≥5
(x2−4x)+3x2+(x−5)≥1
⇒x≤85
x∈(−∞,85]
But x≥5
No solution.
Hence, the solution of inequality (2) is (−∞,0)∪[12,4)
Hence, the common solution of both the inequalities is
(1−√5,0)∪[12,−1+√17)