Given x2+x−(a+2)(a+1)=0, Here, a = 1, b = 1, c = -(a + 2)(a + 1)
x=−b±√b2−4ac2a=−1±√12−4{(a+2)(a+1)}2(1)=−1±√1−4{−(a2+3a+2)2
x=−1±√1+4a2+12a+82=−1±√4a2+12a+92=−1±√(2a+3)22=−1±(2a+3)2
∴x=−1+2a+32 and x=−1−2a−32∴x=2a+22 and x=−2a−42
x=a+1x=−(a+2)
∴ The roots of x2+x−(a+2)(a+1)=0 are (a+1) and −(a+2)