(x+y)23+2(x−y)23=3(x2−y2)13.........(1)3x−2y=13..........(2)
From (1),
(x+y)23+2(x−y)23=3(x2−y2)13⇒(x+y)23+2(x−y)23=3((x+y)(x−y))13⇒(x+y)23((x+y)(x−y))13+2(x−y)235((x+y)(x−y))13=3
⇒(x+yx−y)13+2(x−yx+y)13=3
Let (x+yx−y)13=t then (x−yx+y)13=1t
⇒t+2t=3t2−3t+2=0⇒t2−2t−t+2=0⇒t(t−2)−1(t−2)=0⇒(t−1)(t−2)=0t=1,2
But (x+yx−y)13=t
⇒x+yx−y=t3
For t=1
x+yx−y=1x+y=x−y⇒y=0.......(3)
For t=2
x+yx−y=8x+y=8x−8y⇒7x=9y.........(4)
Now substituting (3) in (2)
we get x=133
⇒(133,0) is a solution
Solving (4) and (2)
we get x=9 and y=7
⇒(9,7) is the other solution