If z=x+iy and ω=1−izz−i, then |ω|=1 implies that in the complex plane z lies on the real axis.
Open in App
Solution
|ω|=1⇒∣∣∣1−izz−i∣∣∣=1⇒|1−iz|2=|z−i|2 ⇒|1−iz|(1+¯iz)=(z−i)(¯z+i) ∵¯¯¯¯¯iz=i¯z=−i¯z ⇒1−iz+i¯z+z¯z+iz−¯iz+1 ⇒2i(z−¯z)=0⇒2i(2iy)=0⇒y=0, which is the equation of real axis.