The correct option is
A True
⇒ L.H.S=sinAsecA+tanA−1+cotAcosecA+cotA−1
=sinA1cosA+sinAcosA−1+cosA1sinA+cosAsinA−1
=sinA1+sinA−cosAcosA+cosA1+cosA−sinAsinA
=sinA×cosA1+sinA−cosA+sinA×cosA1+cosA−sinA
=sinAcosA[11+sinA−cosA+11+cosA−sinA]
=sinAcosA[1+cosA−sinA+1+sinA−cosA(1+sinA−cosA)(1+cosA−sinA)]
=sinAcosA[21+cosA−sinA+sinA+sinAcosA−sin2A−cosA−cos2A+cosAsinA]
=sinAcosA[21−sin2A−cos2A+2sinAcosA]
=sinAcosA[21−(sin2A+cos2A)+2sinAcosA]
=sinAcosA[21−1+2sinAcosA] [ Since, sin2θ+cos2θ=1 ]
=sinAcosA×22sinAcosA
=1
=R.H.S