Sum of common roots of the equations
z3 + 2z2 + 2z + 1 = 0 and z100 + z32 + 1 = 0 is equal to :
-1
z3 + 2z2 + 2z + 1 = (z3 + 1) + 2z(z + 1)
= (z + 1){z2 + z + 1} = 0 ⇒ z = -1, ω, ω2.
Let f(z) = z100 + 1
f(ω) = ω100 + ω64 + 1 = ω + ω2 + 1 = 0
f(ω2) = ω200 + ω64 + 1 = ω2 + ω + 1 = 0
∴ Common roots are ω and ω2 whose sum is -1.