The correct option is B −1
z3+2z2+2z+1=0 ....(1)
⇒(z+1)(z+w)(z+w2)=0
Therefore,−1,−w,−w2 are the roots if the equation (1)
where, w is the cube root of unity.
⇒w3=1&1+w+w2=0
Consider, f(z)=z2006+z100+1
Now, f(w)=w2006+w100+1=(w3)668w2+(w3)33w+1
⇒f(w)=1+w+w2=0
and f(w2)=(w2)2006+(w2)100+1=(w3)1337w+(w3)66w2+1
⇒f(w2)=1+w+w2=0
Since, f(w)=0 and f(w2)=0
Therefore, w and w2 are the roots of the equation z2006+z100+1.
and hence, w and w2 are common root
⇒w+w2=−1
Ans: B