The correct option is C loge(4/e)
S=11.2−12.3+13.4−...∞
S1=11.2+13.4+15.6−...∞
(sum of positive terms)
Tn=1(2n−1)(2n)=12n−1−12n
S1=∑Tn=∑(12n−1−12n)
=1−12+13−14+15...∞
=loge2 (A)
Again S2=12.3+14.5+16.7+...∞
(sum of negative terms)
Tn′=1(2n)(2n+1)
S2=∑Tn′=∑1(2n)(2n+1)=∑(12n−12n+1)
=(12−13)+(13−14)+...∞
=−[−12+13−14+15+...∞]
=−[loge2−1]=1−loge2 ......(B)
Now S=S1−S2 (A)−(B)
loge2−1+loge2
=loge(4/e)