Suppose a,b,cϵR,a+b+c>0, A=bc−a2, B=ca−b2 and C=ab−c2 and ∣∣
∣∣ABCBCACAB∣∣
∣∣ = 49 then∣∣
∣∣abcbcacab∣∣
∣∣ equals ?
A
−7
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2401
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−2401
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−7 We have, ∣∣
∣∣ABCBCACAB∣∣
∣∣=(A+B+C)(AC+BC+AC−A2−B2−C2) Substituting the values of a,b and c, ∣∣
∣∣ABCBCACAB∣∣
∣∣ =(ac+bc+ac−a2−b2−c2)(3a2bc+3ab2c+3abc2−b3c−a3c−a4−ac3−ab3−bc3−b4−a3b−c4) =(ac+bc+ac−a2−b2−c2)(a+b+c)(3abc−a3−b3−c3) =(ac+bc+ac−a2−b2−c2)2(a+b+c)2 =∣∣
∣∣abcbcacab∣∣
∣∣2 Hence, ∣∣
∣∣abcbcacab∣∣
∣∣=±7 However, (a+b+c)>0 and (ab+bc+ac−a2−b2−c2)<0 Hence, ∣∣
∣∣abcbcacab∣∣
∣∣=−7