Suppose A=dydx when x2+y2=4 at (√2,√2),B=dydx when siny+sinx=sinx−siny at (π,π) and C=dydx when 2exy+exey−ex−ey=exy+1 at (1,1), then (A+B+C) has the value equal to
A
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C−3 A:ddx(x2+y2=4) at (√2,√2)) 2x+2ydydx=0 dydx=−xy=−√2√2=−1 B:ddx(siny+sinx=sinx⋅siny) at (π,π) cosydydx+cosx=sinxcosydydx+sinycosx dydx(cosy−sinxcosy)=sinycosx−cosx dydx=cosx(siny−1)cosy(1−sinx) B=−1(0−1)−1(1−0)=−1 C:ddx(2exy+exey−ex−ey=exy+1) at (1,1) [2exy(xdydx+y)]+exeydydx+eyex−ex−eydydx=exy+1(xdydx+y) dydx=yexy+1−2yexy−ex+y+ex2xexy+ex+y−xexy+1−ey.......... since exey=ex+y C=e2−2e1−e2+e12e1+e2−e2−e1=−1 A+B+C=−1−1−1=−3