Suppose A=∫dxx2+6x+25 and B=∫dxx2−6x−27. If 12(A+B)=λ.tan−1(x+34)+μ.ln∣∣∣x−9x+3∣∣∣+C, then the value of (λ+μ) is ….
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D4 Given 12(A+B)=λ.tan−1(x+34)+μ.ln∣∣∣x−9x+3∣∣∣+C .....(1) Given A=∫dxx2+6x+25 A=∫dx(x+3)2+42 Put x+3=t dx=dt ⇒A=∫dtt2+42 A=14tan−1t4+c1 ⇒A=14tan−1x+34+c1 Given B=∫dxx2−6x−27 B=∫dx(x−3)2−62 Put x−3=u dx=du B=∫duu2−62 ⇒B=112ln|t−6t+6|+c2 ⇒B=112ln|x−9x+3|+c2 Now, 12(A+B)=12[14tan−1x+34+12.6ln∣∣∣x−9x+3∣∣∣]=3tan−1(x+34)+ln∣∣∣x−9x+3∣∣∣ Put this value in (1), we get λ=3, μ=1⟹λ+μ=4