∫1−7cos2xsin7xcos2xdx
=∫sec2xsin7xdx−7∫1sin7xdx=I1−I2
Now, I1=∫(1sin7x)sec2x dx
=tanxsin7x+7∫tanxsin8xcosx dx=tanxsin7x+ I2
∴I1−I2=tanxsin7x+C, where C is constant of integration.
Hence, g(x)=tanx
g′(x)=sec2x and g′′(x)=2sec2xtanx
∴g′(0)=1 and g′′(π4)=4
Hence, g′(0)+g′′(π4)=5